

EEA/EMEP

Update to 1.A.3.a Aviation

Annex 1 – Master emissions calculator &

Annex 2 – LTO emissions calculator

TFEIP/EIONET 2020 meeting

Robin DERANSY, Laurent BOX, Mark WHITELEY, Nuria TORRES-MEANA EUROCONTROL Aviation Sustainability Unit May 2020

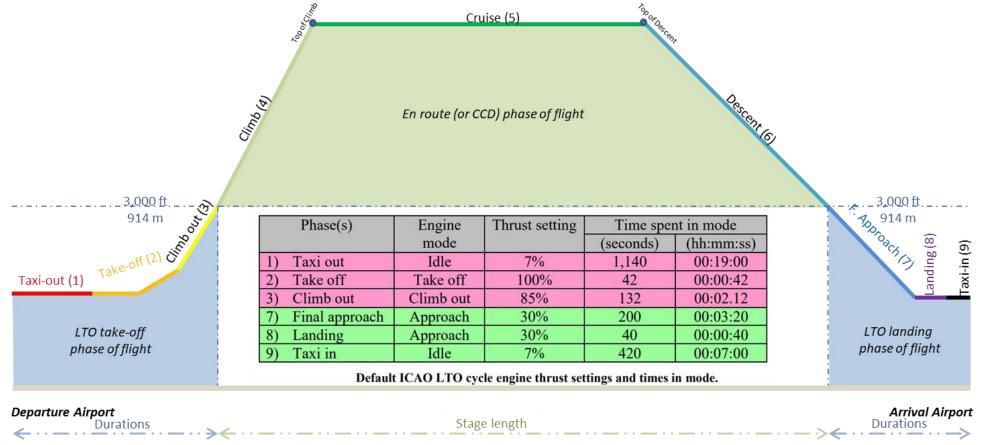

DISCLAIMER

The fuel burnt and emission data provided in these spreadsheets are for supporting EU and EU Member States in the maintenance and provision of European and national homogeneous emissions' inventories. These data should not be used for comparing fuel efficiency and emission data between aircraft models and manufacturers. Fuel burn and emission data in this spreadsheet are estimates and not "absolute" values. The engine associated to each aircraft type is the most common type of engine used for each aircraft type in 2019. Please refer to the "EUROCONTROL Method for estimating aviation fuel burnt and emissions in the framework of the EMEP/EEA air pollutant emission inventory guidebook 2020" for a description of the method used to produce these data. @EUROCONTROL 2020.

Update to 1.A.3.a Aviation Annex 1 and 2

1.A.3.a Aviation Annex 1 - Master emissions calculator

Engine type	JET
The most common engine ID in 2019 used for modelling this aircraft type	3CM026
Number of engines	2


Default LTO (1) cycle in hh:mm:ss						
Phases	ICAO	A busy European airport, year 2019				
Taxi	00:26:00	00:20:06				
Take off	00:00:42	00:00:42				
Climb out	00:02:12	00:02:12				
Approach	00:04:00	00:04:00				
TOTAL	00:32:54	00:27:00				

		ESTIMATIONS YEAR 2019											
Aircraft	A320	The most frequently observed cruise	Duration in	Fuel burn in	CO2	NOx	SOx	H2O	со	НС	PM non volatile in kg	PM volatile (organic+sulph	PM TOTAL in kg (3)
type	AIRBUS	flight level	hh:mm:ss	kg	in kg	in kg	in kg	in kg	in kg	in kg	voiatile iii kg	urous) in kg	(3)
Default LTO (1) cycle	A busy European airport, year 2019		00:27:00	742.54	2 338.99	10.97	0.62	918.52	6.52	1.30	0.0066	0.0536	0.0602
(see table below)	ICAO		00:32:54	816.17	2 570.93	11.28	0.69	1 009.60	8.25	1.64	0.0067	0.0593	0.0661
	125	180	00:21:07	936.63	2 950.38	17.35	0.79	1 158.61	3.05	0.63	0.0123	0.0800	0.0923
	200	240	00:31:11	1 391.18	4 382.23	25.40	1.17	1 720.89	4.26	0.88	0.0186	0.1278	0.1464
	250	300	00:37:22	1 621.38	5 107.33	29.56	1.36	2 005.65	5.20	1.07	0.0236	0.1570	0.1805
	500	360	01:11:01	2 820.09	8 883.27	44.80	2.37	3 488.45	7.73	1.62	0.0318	0.3162	0.3481
	750	360	01:44:34	4 120.25	12 978.79	61.78	3.46	5 096.77	9.81	2.08	0.0401	0.4826	0.5227
	1 000	360	02:18:05	5 379.46	16 945.31	77.58	4.52	6 654.40	11.84	2.53	0.0471	0.6463	0.6933
	1 500	360	03:25:11	7 945.28	25 027.64	110.54	6.67	9 828.30	15.96	3.45	0.0625	0.9767	1.0393
	2 000	360	04:32:18	10 560.97	33 267.04	144.88	8.87	13 063.89	20.13	4.37	0.0796	1.3107	1.3903
	2 500	380	05:39:28	12 864.02	40 521.67	173.42	10.81	15 912.82	24.78	5.41	0.1007	1.6731	1.7738
CCD stage	3 000	380	06:45:57	15 685.71	49 409.99	212.38	13.18	19 403.19	28.84	6.31	0.1181	1.9981	2.1162
length in NM													

HOW DATA ARE CALCULATED?

125; 200; 250; 500; 750; 1000; 1500; 2000; 2500; 3000; ...; 9000 NM

	Fuel burn NOX, HC, CO CO2, H2O, SO		CO2, H2O, SOX	VOC
<3000 feet (LTO phase)	And the control of th	haust emissions bank	Proportional to	Proportional to
>=3000 feet (non-LTO phase)	BADA	BFFM2	fuel burn	HC HC

CHANGES 1/2

This new version makes it possible to:

- take into account new aircraft that have entered into operation since then.
- reflect changes observed in the route network (e.g. cruise levels).
- take into account updates of engine emission indices data (EEDB).
- take into account updates of flight performance data (ANP and BADA).
- take into account the evolution of the modelling applications IMPACT and AEM.

CHANGES 2/2

Type of changes:

- the aircraft trajectory definition and/or the fuel flow calculation model were updated,
- Engine emissions model,
- At least one cruise level update and new distances,
- Cruise level update.

ALL changes are captured in a Release note

EXAMPLE OF DIFFERENCES BETWEEN 2020 and 2016:

·	Re	elease 2016	Re	2016 to 2020 change				
Stage length (Nm)	Most frequent cruise level 2015 (100ft)	Duration (hh:mm:ss)	Fuel burn (kg)	Most frequent cruise level 2019 (100ft)	Duration (hh:mm:ss)	Fuel burn (kg)	Duration	Fuel burn
125	180	00:21:37	932	180	00:21:07	937	-2.29%	0.51%
200	270	00:31:18	1 356	240	00:31:11	1 391	-0.40%	2.56%
250	280	00:37:44	1 647	300	00:37:22	1 621	-0.98%	-1.58%
500	320	01:10:49	2 946	360	01:11:01	2 820	0.27%	-4.27%
750	360	01:45:05	4 124	360	01:44:34	4 120	-0.49%	-0.10%
1000	380	02:18:37	5 273	360	02:18:05	5 379	-0.38%	2.01%
1500	380	03:25:45	7 769	360	03:25:11	7 945	-0.28%	2.27%
2000	380	04:32:47	10 484	360	04:32:18	10 561	-0.18%	0.74%
2500	380	05:39:50	12 914	380	05:39:28	12 864	-0.11%	-0.39%
3000	380	06:46:01	15 847	380	06:45:57	15 686	-0.01%	-1.02%

1.A.3.a Aviation Annex 2 - LTO emissions calculator

1.3759 x 10³

5.0232 x 10 ⁻⁶

2.1386 x 10 -2

6.1976 x 10 ⁻³

2.7588 x 10 ⁻⁴

3.6590 x 10³

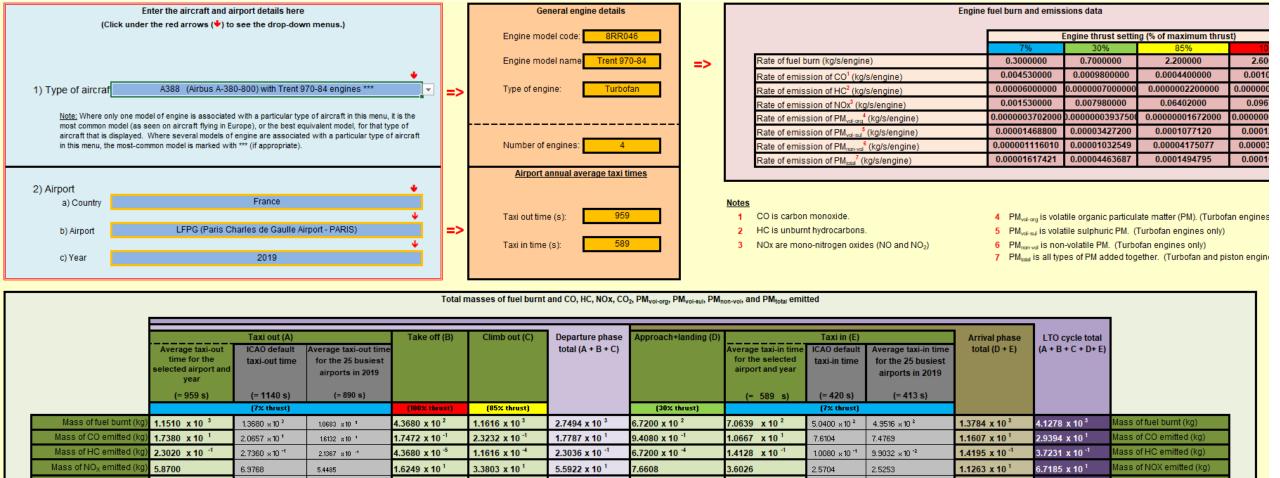
8.8282 x 10 °

5.6872 x 10⁻²

2.2044 x 10⁻²

7.8925 x 10⁻²

8.6606 x 10³


1.4342 x 10 ⁻³

1.3461 x 10 ⁻¹

3.2524 x 10 -2

1.6857 x 10 -1

2.1168 x 10 3

3.7800 x 10 -5

3.2901 x 10 ⁻²

9.9125 x 10 ⁻³

4.2851 x 10 -2

2.2251 x 10 3

8.7169 x 10 ⁻⁴

3.4585 x 10 -2

2.6278 x 10 -3

3.8085 x 10 -2

1.5598 × 10 3

6.1103 x 10 14

2.4243 x 10 12

1.8420 × 10 13

2,6696 x 10 12

1.5876 × 10 3

6.2194 × 10 14

2.4676 × 10 12

1.8749 × 10 13

 2.7173×10^{-2}

4.3419 x 10³

9.0949 x 10 ⁻⁴

6.7486 x 10⁻²

1.2540 x 10 -2

8.0936 x 10⁻²

1.3003 x 10⁴

2.3437 x 10 -3

2.0210 x 10⁻¹

4.5064 x 10 -2

2.4950 x 10⁻¹

3.6256 x 10 3

1.4203 x 10 -3

5.6352 x 10 ⁻²

4.2817 x 10 -3

6.2054 x 10 -2

 4.3092×10^{-3}

1.6881 × 10 13

6.6977 x 10 12

5.0890 ×10 13

 7.3754×10^{-2}

3.3652 x 10 1

1.3183 × 10 -4

5.2305 × 10 -2

3,9742 × 10 14

5,7598 × 10 -2

Mass of CO2 emitted (ke

Mass of PM_{vol-org} emitted (kg

Mass of PM_{vol-sul} emitted (kg

Mass of PM_{non-vol} emitted (kg

Mass of PM_{total} emitted (k

Mass of CO2 emitted (kg)

Mass of PM_{vol-org} emitted (kg)

Mass of PM_{vol-sul} emitted (kg)

Mass of PM_{non-vol} emitted (kg)

Mass of PM_{total} emitted (kg)

TERMS USED IN THIS PRESENTATION

Item/Acronym	Definition
AEM	EUROCONTROL Advanced Emissions Model; The application used for calculating the amount of fuel burn and emissions.
ANP	EUROCONTROL Aircraft Noise and Performance database; Used for the calculation of aircraft performances and trajectory below 6,000 feet .
BADA	EUROCONTROL BAse of Aircraft Data; Used for the calculation of the trajectory of aircraft above 6,000 feet and the calculation of fuel consumption.
BFFM2	Boeing Fuel Flow Methods 2
ECAC	European Civil Aviation Conference
EEDB	Engine Emissions DataBank. The public database that describes the jet engine emissions indices.
ICAO	International Civil Aviation Organisation
IMPACT	EUROCONTROL application for noise and emission impact assessments. It integrates an advanced trajectory calculation model based on ANP and BADA that is used in this context.

Update to 1.A.3.a Aviation Annex 1 and 2

Thank you! Questions