

Refinement of chapter 5.B.2 Anaerobic digestion at biogas facilities

Sebastian Wulf, Hans-Dieter Haenel

History

- May 2016: TFEIP meeting in Zagreb. Discussion on revised chapter 5.B.2. for EMEP 2016 guidebook:
 - Need of improvement for existing revised chapter
- August 2016: final version of improved chapter sent to chairs of Ag & Npanel

- Mai 2017: TFEIP meeting in Krakow. Discussion of improved chapter 5.B.2
 - Further improvement needed to link 5.B.2 to 3.B. and 3.D.

Major changes 2016

- Technology description shortened/restricted to described methodology
- EF were checked and decided to stick to Cuhls et al. (other options not possible within time frame)

General structure not changed

- Calculations and EF were transformed to be based on N-mass in feedstock (instead fresh matter)
- Information on N-content of various feedstocks for AD is given in case only fresh matter masses are known.
- Tier 1 method introduced (was missing so far)
- For emission control, reference is given to chapter 3B (storage)
- Clear linkages to chapter 3B (slurries entering AD) and 3D (digestate spreading) introduced.

Further refinement (for this meeting)

- Improve links to 3.B. for manure and 3.D for energy crops and organic waste
- Add TAN-flow to 5.B.2 for manure
- Account for mineralization of organic N to TAN for manure during digestion

Links between 5.B. and chapter 3

Calculation of emissions in chapter 5.B

Tier 1

All emissions calculated based on total N in feedstock

$$E_{\text{NH3}} = AR_{\text{feedstock}} \times EF_{\text{NH3-N, Tier 1}} \times 17/14 \tag{1}$$

If Tier 1 is used in 3.B:

- Emissions in 3.B. calculated on based on animal places
- Care needs to be taken to avoid double counting of N excreted by animals!!

No consideration of digestate from manures in 3.B

Calculation of emissions in chapter 5.B

All emissions calculated based on total N in feedstock

$$E_{\text{NH3}} = AR_{\text{feedstock}} \times \sum_{\text{stages}} EF_{\text{NH3-N, stage i}} \times 17/14$$
 (2)

Calculation of N in digestate <u>after storage</u>

For energy crops and waste

$$N_{\text{tot,dig}} = N_{\text{tot,sub}} - (E_{\text{NH3}} \times 14/17)$$

(3)

with:

N_{tot.dig}: N_{tot} in digestate after storage in kg a⁻¹

3Da₂c

N_{tot,sub}: N_{tot} of the feedstock entering 5.B.2 in kg a⁻¹

 E_{NH3} : NH₃ emitted in kg a⁻¹, calculated in equation (1) or (2)

For manures

$$TAN_{dig} = TAN_{sub} + f_{min} \times (N_{tot} - TAN_{sub}) - (E_{NH3} \times 14/17)$$
 (4)

with

TAN_{dia}: TAN in digestate after storage in kg a⁻¹

TAN_{sub}: TAN in manure entering 5.B.2 in kg a⁻¹

f min: relative share of organic N entering the digester that is mineralized to TAN in kg kg⁻¹

 E_{NH3} : NH₃ emitted in kg a⁻¹, calculated from total N in equation (2)

Germany: Survey showed, that mean TAN in digestion of manure rises from 45% to 62% \longrightarrow $f_{\min} = 0.32$

Further steps

- Thorough review on emission factors (now: only based on one study)
 - If possible: TAN for every step based rather than based on Ntot in feedstock

- Discussion needed on:
 - Consideration of separation
 - Use of digestates for other purposes than agriculture (fertilization)

....

Revision should be aligned with IPCC revision process