

Feedback from the Training on emissions distribution methodology and introduction to EDGAR WEB-based gridding tool (February, 2018)

Marilena Muntean

Energy, Transport and Climate Directorate, Air and Climate Unit

European Commission Joint Research Centre, Ispra, Italy

Description

Organiser: Joint Research Centre of the European Commission, Directorate for Energy, Transport and Climate/Air and Climate Unit.

Joint activity: Emissions Database for Global Atmospheric Research (EDGAR) & Task Force on Emission Inventories and Projections (TFEIP).

Topic: Emissions distribution and gridding focusing on the methodology described in EMEP/EEA air pollutant emission inventory guidebook, and the EDGAR methodology and gridding tool for emissions distribution. During the training, participants used the EDGAR Web-based gridding tool to distribute EDGAR emissions (input files prepared by EDGAR team) and their national emissions.

Sectors: Road transport and small combustion activities sectors.

Target group: intended for countries with limited experience of reporting gridded data at 0.1x0.1 degree resolution as now required under the Convention and the National Emission Ceilings (NEC) Directive: Country experts from the Danube Region, EU candidate countries, EU potential candidate countries and Countries associated to Horizon 2020.

The training in 2018 was organized as a follow up of the EDGAR & TFEIP training/workshop in 2014.

Contributors & participants

EC/Joint Research Centre

> Marilena Muntean, Diego Guizzardi, Edwin Schaaf, Greet Janssens-Maenhout

TFEIP

- > **Jeroen Kuenen**, TNO/co-chair of the TFEIP Expert Panel on Combustion and Industry
- ➤ **Leonidas Ntziachristos**, Univ.-Prof. PhD., Aristotle University Thessaloniki/co-chair of the TFEIP Expert Panel on Transport

Country experts

- > Mirela Poljanac, EKONERG Ltd, Atmospheric Protection and Climate Change Department, Croatia
- > Nebojsa Redzic, Serbian Environmental Protection Agency
- > Orsolya Farkas, KTI Institute for Transport Sciences, Hungary
- > Canan Esin KÖKSAL, General Directorate for Environmental Management, Climate Change and Air Management Department, Ministry of Environment and Urbanization, Ankara, Turkey

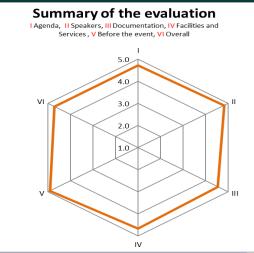
Participants from Hungary, Romania, Slovakia, Croatia, Serbia, Albania, Republic of Moldova, Turkey, Bosnia & Herzegovina.

Setting

Training: "Emissions distribution methodology and introduction to EDGAR WEB-based gridding tool"

Date: 19-20 February 2018

Location: EC/Joint Research Centre, Ispra, Italy

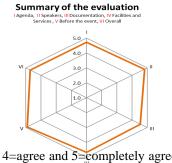

Agenda:

- Session 1 "Convention on Long-Range Transboundary Air Pollution and EMEP/EEA: reporting requirements on gridded emission inventories"
- Session 2 "Countries' Expertise and Perspectives"
- Session 3 "Emissions inventory and emissions distribution: EDGAR methodology"
- > Session 4 "EDGAR Web-based gridding tool"
- > Session 5 "Practical applications and use the EDGAR Web-based gridding tool"
- Lesson learned

Lessons learned and feedback

4=agree and 5=completely agree

Lessons learned


General

- This training was very useful.
- The experts had the opportunity to run the tool and manage to produce certain results.
- Guidance was provided on how to prepare the input files with national emissions and distribute them using this tool; the focus was on methods suitable for reporting spatial data required under the LRTAP Convention and NEC Directive.
- The EDGAR trainings/workshops demonstrated that the emissions distribution work could be done, but this job requires cooperation between different professions, financial resources, time and a lot of work.
- In particular, detailed technical knowledge together with tips and advice provided by the EDGAR team, the TFEIP experts as well as by the experts from other countries who attended the workshops were/are useful.
- The fact that the presentations/training documents are available to all the participants via a secured link and the opportunity to attend the meeting as remote participant via WebEx was very much appreciated.
- Exchanging contact information between experts from neighbouring countries would be useful.
- Future trainings on this topic would be very much appreciated.

Lessons learned and feedback

useful.

	4=agree and 5=completely agree
Lessons learned	
Specific	
TFEIP	EDGAR has already reached a level of maturity and can be really helpful for policy at a centralised level and to assist countries that have no alternative gridding tools or experience.
Turkey	We used/will use the knowledge provided in both trainings (2014 and 2018) organised by the JRC for national reporting.
Moldova	The country has limited capacity, expertise and knowledge in gridding of emissions. A tool as the EDGAR Web-based gridding tool can be useful for gridding of national emissions, supporting the country in the reporting of official data under the CLRTAP.
Albania	Suggestion: because the capacity/budget is not enough, for the Balkan countries e.g. a pilot project would be useful to fulfil this obligation.
Bosnia and Herzegovina	 A gridding tool is very useful to distribute emissions especially for small and low capacity countries such as Bosnia and Herzegovina.
	 The most important lesson of the training is the application of the final results (gridded emissions) for the local and governmental authorities e.g. for emissions reductions plans, management of air quality and different strategies.
	 Suggestion: future trainings within possible project(s) for the Western Balkan countries would be

Future perspective

EDGAR Web-based gridding tool

For the foreseeable future - due to <u>security reasons</u> we are not able to continue to provide access to this tool to the experts outside the JRC.

"Convention on Long-Range Transboundary Air Pollution and EMEP/EEA: reporting requirements on gridded emission inventories"

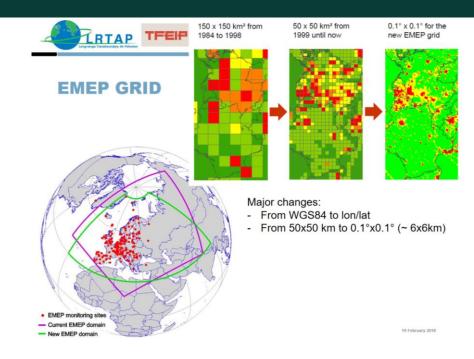
19 February 2018

General

WHAT IS REQUIRED?

All signatories: LRTAP Convention

> All EU MS: EU National Emission Ceilings Directive 2016/2284/EU


Reporting requirements

Reporting requirement		Pollutants	Timing	Frequency	Years to report	
284		SO2, NOx, NH3, NMVOC, CO, Cd, Pb, Hg, PAHs, PCDD/F, HCB, PCBs, As, Cr, Cu, Ni, Se, Zn	15 Feb (t-2)	Annual	1990 to t-2	
6/2		PM2.5, PM10, TSP, BC	15 Feb (t-2)	Annual	2000 to t-2	
J) 201		SO2, NOx, NMVOC, NH3, CO, Cd, Hg, Pb, POPs*, PM2.5, PM10, BC	1 May (t-2)	Every 4 years	t-2 only	
DIRECTIVE (EU) 2016/2284	Il arge noint source inventories	SO2, NOx, NMVOC, NH3, CO, Cd, Hg, Pb, POPs*, PM2.5, PM10, BC	1 May (t-2)	Every 4 years	t-2 only	
DIRECT	Emissions projections	SO2, NOx, NMVOC, NH3, PM2.5, BC	15 Mar	Every 2 years	2020, 2025, 2030 (required) 2040, 2050 (optional)	
	Informative Inventory report (IIR)	All pollutants in national emission inventory	15 Mar (t-2)	Annual	All years covered by the inventory	
Guidelines 1/125		SO2, NOx, NH3, NMVOC, CO, Cd, Pb, Hg, POPs*, As, Cr,				
	National emission inventories	Cu, Ni, Se, Zn	15 Feb (t-2)	Annual	1990 to t-2	
idel 25		PM2.5, PM10, TSP, BC	15 Feb (t-2)	Annual	2000 to t-2	
/12 /12	Informative Inventory Report (IIR)	All pollutants in national emission inventory	15 Mar (t-2)	Annual	1990 to t-2 (2000 to t-2 for PM)	
₩ ₩	Emission projections (for Parties to the	SOx, NOx, NH3, NMVOC, CO, PM10, PM2.5, Cd, Pb, Hg,		Every 4 years from	2020, 2025, 2030, and where available	
port E/EB.	Gothenburg Protocol)	PAHs, BC	1 May (t-2)	2015 onward	also 2040 and 2050	
22 C		SOx, NOx, CO, NMVOC, NH3, PM10, PM2.5, Cd, Pb, Hg,		Every 4 years from		
	Gridded emissions	PAHs, PCDD/F, HCB, PCB, BC	1 May (t-2)	2017 onward	year t-2 only	
		SOx, NOx, CO, NMVOC, NH3, PM10, PM2.5, Cd, Pb, Hg,		Every 4 years from		
-	Large point sources	PAHs, PCDD/F, HCB, PCB, BC	1 May (t-2)	2017 onward	year t-2 only	

Gridding emissions requirements

Sector specific

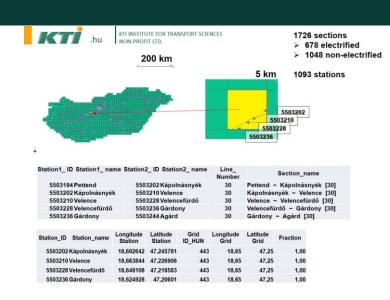
Emissions and reporting

e.g. road transport

Bottom-up vs top-down

- Higher resolution does not necessarily mean higher accuracy
- In a spatially-resolved inventory, uncertainty in activity data profiles may be larger than uncertainty in emission factors.

Countries' Expertise and Perspectives


Croatia

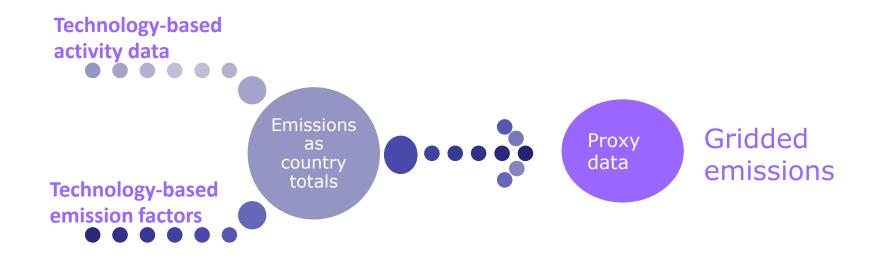
Description of the methodology to estimate and distribute emissions from transport sector and small combustion activities, including results.

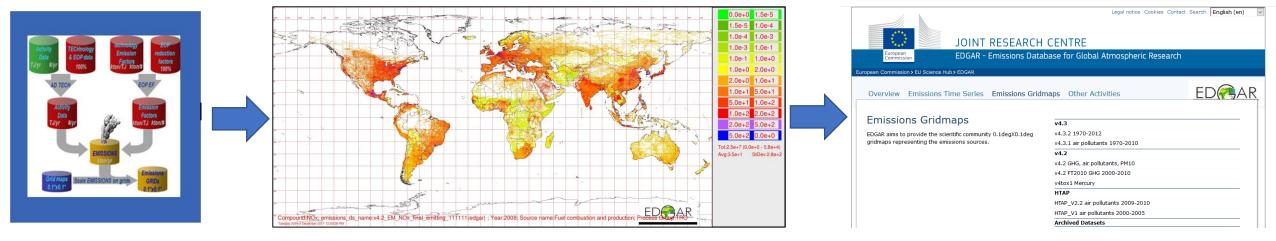
Results: gridded emissions from Road transport, 2015 F_RoadTransport, NFR 1.A.3.b.i Road transport: Passenger cars NOx Legenda® 0 297,31

Hungary

Description of the methodology to estimate and distribute emissions from railway, including results.

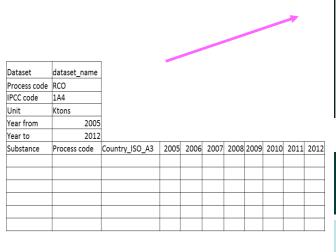
Serbia


Presented road, railway and waterborne gridded emissions.


Turkey

Description of the the "National Air Emission Management System in Turkey" and how the EDGAR methodology was applied for road transport sector, including results.

EDGAR methodology: emissions estimation and emissions distribution

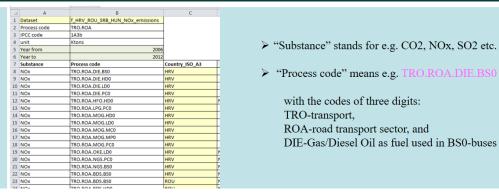


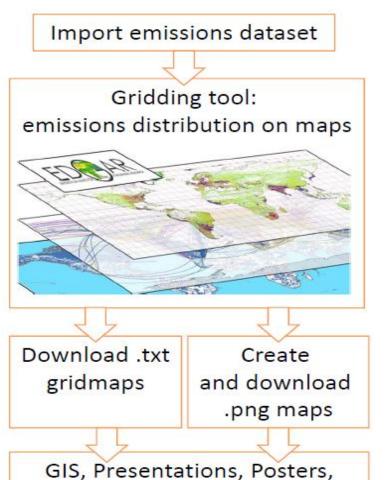
Methodology

Final products: emissions & grid maps

Website: http://edgar.jrc.ec.europa.eu

EDGAR We-based gridding tool: 1) Small combustion activities and 2) Road transport




EDGAR codes: emissions input file (1A4i)

	EDGAR RCO	1					
Dataset	EMISSIONS	l					
Process	1	l					
code	RCO	l					
		l					
IPCC code	1A4	l					
unit	Ktons	l					
		l					
Year from	2008	ļ					
Year to	2012						
1		Count					
	l	ry_IS					
Substance	Process code	O_A3	2008	2009	2010	2011	2012
PM10	RCO.AGR.DIE.NSF	HRV	0.026166	0.024431	0.023643	0.023484	0.023484
PM10	RCO.AGR.GGS.NSF	HRV	NULL	NULL	NULL	NULL	NULL
PM10	RCO.AGR.HFO.NSF	HRV	0.00074	0.00074	0.000592	0.00074	0.00074
PM10	RCO.AGR.LPG.NSF	HRV	0.000511	0.000511	0.000511	0.000511	0.000511
PM10	RCO.AGR.MOG.NSF	HRV	0.001465	0.001302	0.001302	0.001302	0.001302
PM10	RCO.AGR.NGS.NSF	HRV	0.00035	0.000333	0.000378	0.000366	0.000366
PM10	RCO.AGR.OKE.NSF	HRV	NULL	NULL	NULL	NULL	NULL
PM10	RCO.COM.BKB.MB0	HRV	NULL	NULL	NULL	NULL	NULL
PM10	RCO.COM.BKB.SB0	HRV	NULL	NULL	NULL	NULL	NULL
PM10	RCO.COM.BKB.STV	HRV	NULL	NULL	NULL	NULL	NULL
PM10	RCO.COM.CHA.MB0	HRV	NULL	0.00293	0.00293	0.00293	0.00293
PM10	RCO.COM.CHA.SB0	HRV	NULL	0.001507	0.001507	0.001507	0.001507
PM10	RCO.COM.CHA.STV	HRV	NULL	0.003232	0.003232	0.003232	0.003232
PM10	RCO.COM.DIE.NSF	HRV	0.013712	0.012295	0.011662	0.010245	0.010245
PM10	RCO.COM.GGS.NSF	HRV	0.000024	0.000029	2.45E-05	2.15E-05	2.15E-05

- ➤ Substance is e.g. CO2, NOx, SO2, BC, PM10, PM2.5, PAH BaP etc.
- ➤ Process code is e.g. RCO.RES.LGN.SB0; RCO stands for "small combustion activities", RES "residential subsector", and LGN "Lignite/Brown Coal" as fuel used in SB0 "small boiler appliance"
- Country_ISO_A3 is e.g. ROU, HRV, SVK, SVN for Romania, Croatia, Slovakia and Slovenia respectively.

EDGAR codes: emissions input file (1A3b)

Comparisons...

http://edgar.jrc.ec.europa.eu/eolo_new/index.php/webtool

Emission distribution: 1) practical applications and 2) use of the EDGAR Web-based gridding tool

Population Density Grid in 2.5 arc-minute (0.0833 degree resolution) for 1990, 1995, 2000 (new version 0.01 degree resolution)

1) EDGAR methodology and practical applications Point sources - power generation Area sources - small combustion activities Line sources - road transport 2) Area sources Small combustion activities 1) Point sources Power plants Bulgaria: Coal Power Plants location (2004)

Step 1: Download the road country map

Download "OpenStreetMap" data for your country from http://www.openstreetmap.org, which is open data

Commonly Used Formats

croatia-latest.osm.pbf,; croatia-latest.shp.zip, (ESRI compatible shape files)

Other Formats and Auxiliary Files

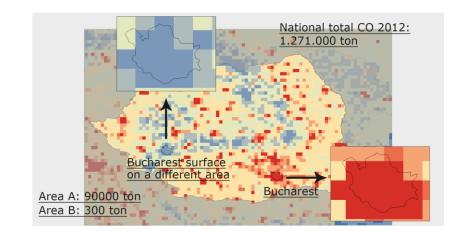
<u>croatia-latest.osm.bz2;</u>, <u>poly file</u> that describes the extent of this region; <u>osc.gz files</u> that contain all changes in this region; <u>raw directory index</u> allowing you to see and download older files

Different road types (definition e.g for USA):

Motorway - Interstate Highways

Primary - Interstate Business Routes

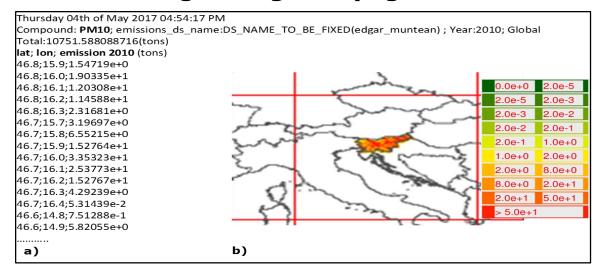
Secondary - State highways, State business routes, Some country routes, Major County routes


Residential - minor routes in residential areas

Source: http://wiki.openstreetmap.org/wiki/Talk:United_States_roads_tagging

Practical application e.g.

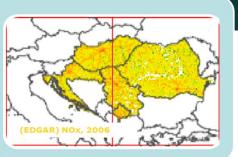
Romania CO emissions, which are mainly from TRO and RCO. Calculate the % of the emissions over the 2 areas based on the national total and assign to the right box. Area A (urban)=Area B (rural)

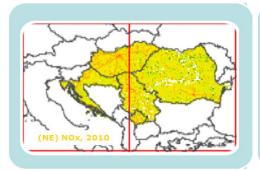

Solution: blue 0.02%, red 7.08%

Emission distribution: 1) practical applications and 2) use of the EDGAR We-based gridding tool

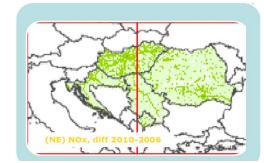
2) EDGAR Web-gridding tool:

- > Use of the tool by the country experts
- Create grid maps
- Discuss the results


Emission grid maps created using EDGAR Web-gridding tool (e.g. for 1A4i and 1A3b)



Slovenia, PM10 emissions from fuel used in residential subsector: a) grid map (part of) in .txt format, b) map in .png


Source: JRC reports

National Emissions for 2006 and 2010 of Croatia, Serbia, Romania and Hungary distributed using EDGAR proxy (left) and EDGAR emissions for 2006 and 2010 of Croatia, Serbia, Romania and Hungary distributed using EDGAR proxy (right), the difference is also provided.

Any questions?

EDGAR: http://edgar.jrc.ec.europa.eu/

Access to the training documents: ask for password by sending an e-mail to marilena.muntean@ec.europa.eu

Link to the **training documents**: http://edgar.jrc.ec.europa.eu/gridding training 2018.php

Stay in touch!

ec.europa.eu/jrc

- **B**
- @EU_ScienceHub
- •

EU Science Hub - Joint Research Centre

in

Joint Research Centre

You Tube

EU Science Hub

