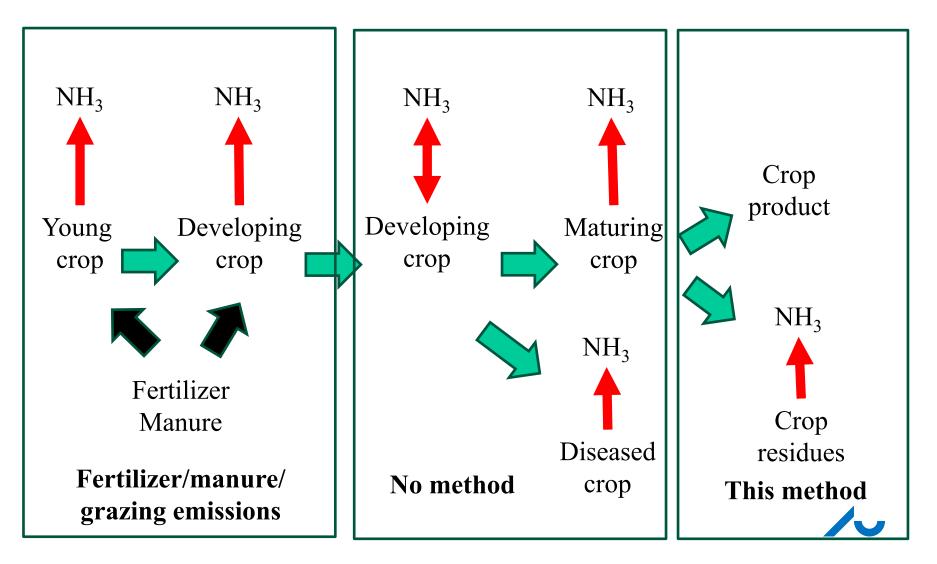


Calculation of NH₃ emissions from crop residues


Nick Hutchings, Aarhus University J Webb, consultant

Format

- Step through the methodology
- Feel free to interrupt to ask for clarification
 - Raise hand or write question in Chat box
- Opportunity to ask questions
 - At the end of this webinar
 - Afterwards by email

NH₃ emissions from cropping

NH₃ emissions from crop residues

- Emissions occur under the following conditions:
 - plants/plant parts die or are killed and there is decomposition of protein to ammonium
 - the plant material is exposed to the atmosphere
 - the nitrogen concentration in the residue is above a threshold value
- Emissions are small (<1–3 kg ha⁻¹ year⁻¹), but given the large areas of crops, the total may be significant at the national scale
 - < 5% for The Netherlands (livestock intensive)
 - 1% for Taiwan

Calculation of NH₃ emissions from crop residues

- de Ruijter and Huijsmans (2019) developed a robust methodology
 - now incorporated into The Netherlands emission inventory
- Methodology adapted for inclusion in the 2023 Guidebook

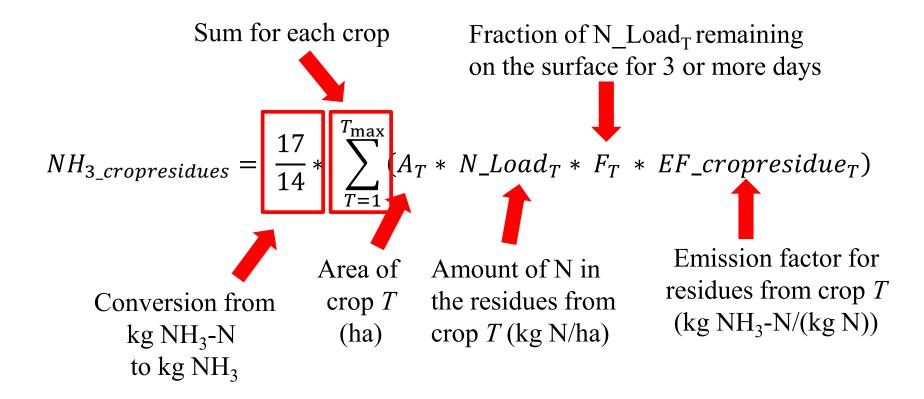
A methodology for estimating the ammonia emission from crop residues at a national scale

F.J. de Ruijter*, J.F.M. Huijsmans

Wageningen University and Research, Agrosystems Research, P.O. Box 16, 6700 AA, Wageningen, the Netherlands

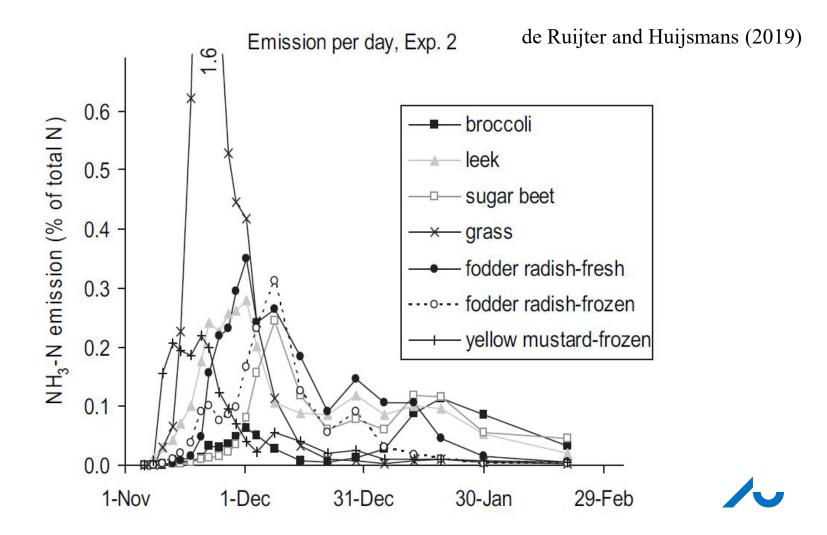
Sources of crop residues

- Residues left on the soil surface after harvesting
- Residues left on or added to the soil surface after other management actions such as:
 - trimming pasture to stimulate fresh growth
 - killing crops with herbicides
 - desiccating potato haulms
 - mulching to controlling erosion
- Green manures (cover crops) that die after frost

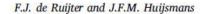


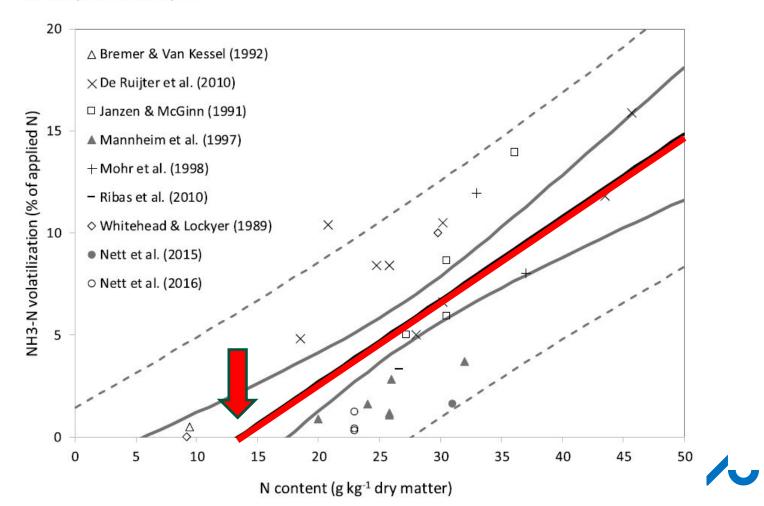
Methodology builds on IPCC N₂O emissions from crop residues

- Minimize the need for new activity data
- Harmonize with greenhouse gas emission estimates
- Main differences from IPCC N₂O methodology:
 - Only surface residues are included
 - No emission from low N concentration residues
 - Residues present for ≤ 3 days are ignored



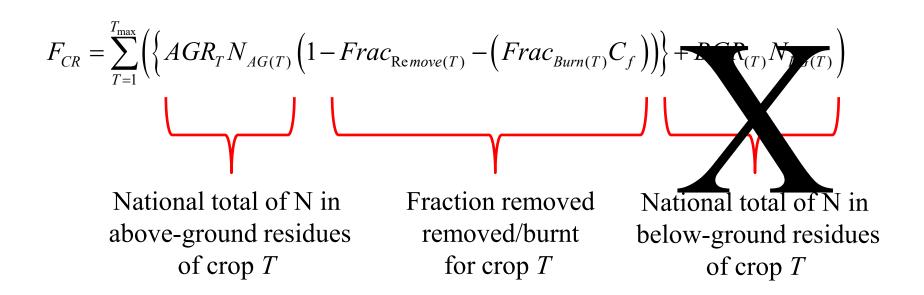
Calculation of NH₃ emissions from crop residues





$F_{\rm T}$ - why the 3 day threshold?

Why a minimum residue N concentration?


NH₃ emissions from crop residues – using the IPCC N₂O format

$$NH_{3_cropresidues} = \frac{17}{14} * \sum_{T=1}^{T_{\text{max}}} (A_T * N_Load_T * F_T * EF_cropresidue_T)$$
National total of N in above-ground residues

of crop T

IPCC (2019)

N FROM CROP RESIDUES AND FORAGE/PASTURE RENEWAL (TIER 1)

 $AGR_{T} = AG_{DM(T)}A_{T}$ Total national above-ground residue production of crop T (kg DM) Total national area of crop T (ha)

$$DM = dry matter$$

Above-ground: IPCC (2019)

$$A_T A G_T N_{AG(T)} \left(1 - Frac_{\text{Remove}(T)} - \left(Frac_{\text{Burn}(T)} C_f \right) \right)$$

Total national above-ground residue production of crop *T* (kg DM)

Fraction of residues removed or burnt

Concentration of N in above-ground residue of crop T (kg N/kg DM)

Calculation of NH₃ emissions from crop residues

$$NH_{3_cropresidues} = \frac{17}{14} * \sum_{T=1}^{T_{\text{max}}} [A_T * N_Load_T] * F_T * EF_cropresidue_T)$$

Emission source – crop residues

Above-ground source of N₂O in IPCC (2019): $A_T A G_{DM(T)} N_{AG(T)} \left(1 - Frac_{Remove(T)} - \left(Frac_{Burn(T)}C_f\right)\right)$ N_Load_T

 A_{T}

Calculation of NH₃ emissions from crop residues

$$NH_{3_cropresidues} = \frac{17}{14} * \sum_{T=1}^{T_{\text{max}}} (A_T * N_Load_T * F_T * EF_cropresidue_T)$$

F_{T}

- Only crop residues remaining on the soil surface for 3 days or more are considered to emit NH₃
- Introduce an additional fraction $(Frac_{Incorp(T)})$, the fraction of residues incorporated within 3 days
- Introduce two new parameters:
 - $-\alpha = \text{fraction of } Frac_{\text{Remove}(T)} \text{ removed within 3}$ days
 - $-\beta =$ fraction of *Frac*_{Burn(T)} burnt within 3 days

 F_{T}

$$F_{T} = 1 - \left(Frac_{Incorp(T)} + \alpha Frac_{Remove(T)} + \beta Frac_{Burn(T)}C_{f} \right)$$

 $Frac_{incorp(T)}$ – fraction incorporated within 3 days α = fraction of $Frac_{Remove(T)}$ removed within 3 days β = fraction of $Frac_{Burn(T)}$ burnt within 3 days

Calculation of NH₃ emissions from crop residues

$$NH_{3_cropresidues} = \frac{17}{14} * \sum_{T=1}^{T_{\text{max}}} (A_T * N_Load_T * F_T * EF_cropresidue_T)$$

EF_cropresidues

- The EF_cropresidues depends on the N concentration in crop residues (N_{AG(T)}; kg N (kg DM)⁻¹):
- If the $N_{AG(T)} \le 0.0132 \text{ kg N} (\text{kg DM})^{-1}$

$$-$$
 EF_cropresidues $=$ 0

• Otherwise

$$- EF_{cropresidues} = (410 * N_{AG(T)} - 5.42)/100$$

Crop residue NH₃ emission -IPCC format

$$NH_{3_cropresidues(T)} = A_{T}AG_{DM(T)}N_{AG(T)} \begin{pmatrix} 1 - Frac_{Incorp(T)} - \alpha Frac_{Re\ move(T)} \\ -\beta Frac_{Burn(T)}C_{f} \end{pmatrix} EF_{cropresidues(T)}$$

Activity data

- Most of the data should already be available
- Inputs used for IPCC Tier 1 methodology for N_2O emissions from crop residues will be available
 - See IPCC (2006 or 2019), Equation 11.6 N input in crop residues

Additional information required

- Proportion of residues incorporated within 3 days (*Frac*_{Incorp(T)})
 - 1 = if all residues incorporated within 3 days after harvest
 - -0.5 = half of the residues covered or mixed with soil at harvest.
 - 0 = no covering by soil during harvest or through incorporation.
- α fraction of $Frac_{\text{Remove}(T)}$ that is removed within 3 days
- β fraction of $Frac_{Burn(T)}$ burnt within 3 days

Limited additional information required

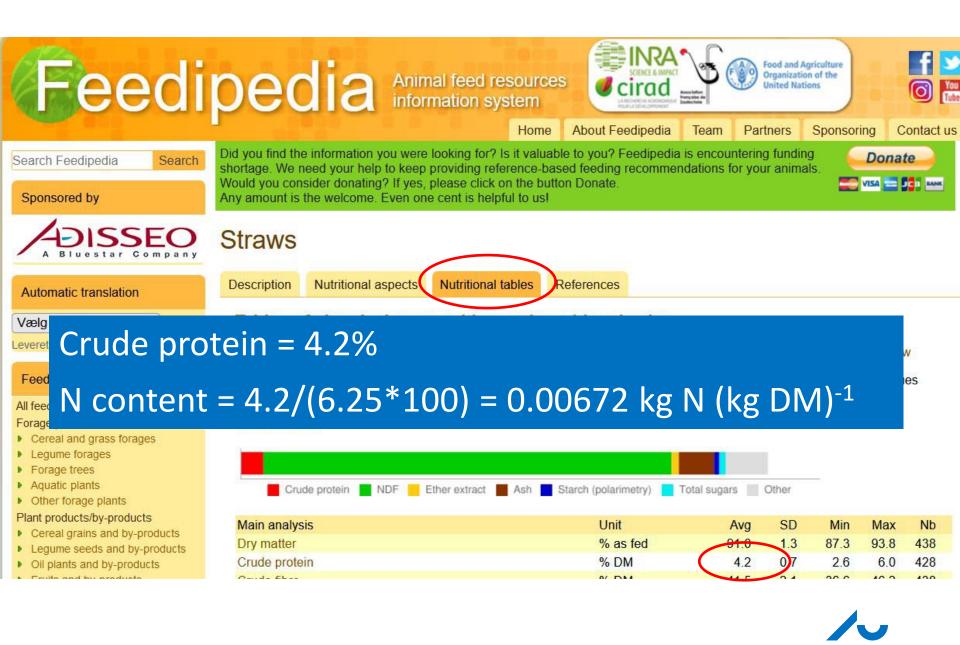
• For many common crops, $EF_{cropresidue} = 0$

Crops whose residues are not sources

Generic Grains Winter Wheat Spring Wheat Barley Oats Maize Rye Rice Millet Sorghum **Beans and Pulses** Soybeans

Main crops whose residues are potential sources

Potatoes and other root crops Peanuts Alfalfa Non-legume hay N-fixing forages Non-N-fixing forages Perennial grasses Grass-clover mixtures Most horticultural crops All cover crops and green manures



N content of crop residues

- The IPCC methodology only provides data on the N content of a limited number of residues hence we include the greater range cited by de Ruijter and Huijsmans in a Guidebook annex.
- Alternative source is Feedipedia (<u>https://feedipedia.org/</u>)
 - search for the crop residue
 - click on the Nutritional tables tab
 - N content = Avg Crude protein/(6.25 * 100)

Limited additional information required

- For many common crops, $EF_{cropresidue} = 0$
- α fraction of $Frac_{\text{Remove}(T)}$ that is removed within 3 days
- β fraction of $Frac_{Burn(T)}$ burnt within 3 days

$Frac_{\text{Remove}(T)}, Frac_{\text{Burn}(T)} & Frac_{\text{Incorp}(T)}$

- Only required for potential sources (EF_cropresidues >0)
- $Frac_{\text{Remove}(T)}$ = same value as for IPCC N₂O - Assume $\alpha = 1$
 - Rapid harvesting likely, to preserve biomass quality
- Assume $Frac_{Burn(T)} = 0$
 - Burning is illegal in most of Europe
 - Residues that are potential sources are unlikely to be burnt (too wet and/or too useful as livestock feed)
 - Do not need to estimate β
- Frac_{Incorp(T)}
 - Need to consult local experts

Cover crops & green manures

- Should already be included in IPCC Tier 1

 local estimates should be available
- Default, based on Ruis et al (2019)
 - Humic areas -3.8 Mg DM ha⁻¹
 - Arid areas 2.6 Mg DM ha⁻¹

Ruis, S.J., Blanco-Canqui, H., Creech, C.F., Koehler-Cole, K., Elmore, R.W. and Francis, C.A. (2019), Cover Crop Biomass Production in Temperate Agroecozones. Agron. J., 111: 1535-1551. https://doi.org/10.2134/agronj2018.08.0535

Final remarks

- Agriculture and Nature Expert Panel
 - www.tfeip-secretariat.org/agriculture-and-nature
 - Contact details for co-chairs
- Presentation will be available as a PDF file
- Example Excel spreadsheet

