

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

TFEIP - Transport

Jukka-Pekka Jalkanen

Shipping

- Waterborne traffic
 - > National, international
 - > Ocean/Inland
 - Recreational boating
- Vessel activity
 - > AIS, LRIT, VMS, radar, departure/arrival times, ICOADS, AMVER...
 - > Anything with timestamp, location & identity; know the strengths and weaknessess of each
- Tasks from European Sustainable Shipping Forum
 - Emission factors
 - Ship emission modeling
 - > Primary/Secondary PM, especially BC
 - Impact of emission abatement

Requirements go beyond Tier 3 inventory preparation approach; Activity data affects EFs

What is ESSF

- Several subgroups
 - > Air emissions from ships (Compliance monitoring, fuel switching, emission modeling)
- Round table, consists of
 - Commission: DG ENV, MOVE, CLIMA, EMSA
 - > All EU member states
 - Research partners
 - Engine/Equipment manufacturers
 - > NGOs
 - > Shipping companies, stakeholder organisations
 - ECSA, ESPO, also national level
- Purpose: Provide a forum for exchange of information and discussion
 - May feed to IMO submissions

Emission factors

- Lot of the work still relies on emission factors from 1995 Lloyds Register campaign
- Fuel consumption modeling
 - Equivalence between g/kWh and g/kg
- Load dependency of emission factors
 - Not just weighted average of ISO 8178, but the values themselves
 - Emphasize onboard measurement campaigns
 - Continuous measurements
- HFO, MDO, MGO, LNG, biofuels
 - Methane slip

- Diesel

– Otto

NOx	SOx	СО
CO2	BC	PM
VOC	CH4	PN

Emission abatement

- Repeat the same table, but include the impact of each emission abatement technique on various pollutants
- Most relevant ones: SCR, SOx scrubbers

> (DWI, HAM, DOC, WiFE, NTP...)

NOx	SOx	СО
CO2	BC	PM
VOC	CH4	PN

SCR temperature window; OK for 350°C, but significantly less for 270°C

> Low load operation may be a problem for SCR \rightarrow Port areas

- Scrubber: Increase of fuel consumption (few %), SOx removal, impact on PM, especially on BC
- LNG

Products of incomplete combustion

- EC/OC; BC
- Black Carbon emissions from marine engines using various fuels
 - > Connected to both engine operation and fuel, not necessarily to sulphur content of fuel
 - > New common rail engines, electronically controlled ≠ older mechanically controlled engines
 - Scrubbing reduces BC, but only slightly
- VOC emissions much lower (1/6) with modern engines than the 1995 campaign suggests
 - > VOC speciation important: volatile, non-volatile, semivolatile
 - Not available if ISO 8178 is required (THC from FID) \rightarrow GC-MS?
 - Secondary PM formation needs this information, big problem for CTMs
 - Plan A: PM as non-volatile, speciation of VOCs \rightarrow CTMs take care of relevant processes
 - Plan B: PM includes the condensed fraction \rightarrow Emission models take care of the condensing fraction
- CO, a function of engine load, but also a function of load change
 - > For old engines, transitional loads will produce peaks of CO

