May, 13th 2019

ECAMED: A FEASIBILITY STUDY TO ASSESS THE IMPACT OF THE IMPLEMENTATION OF AN ECA IN THE MEDITERRANEAN SEA

Jean-Marc ANDRE (CITEPA)

on behalf of teams from

maîtriser le risque pour un développement durable

Ship Maneuvering out of Port S^t Louis du Rhone, near Marseilles

Content

- Introduction
- Air quality in Europe
- Brief presentation of the ECAMED study
- ECAMED set-up : 4 steps
 - Step 1 : Detailed description of ship traffic
 - Step 2 : calculation of current emissions and scenarios
 - Step 3 : Simulation of air pollutant concentrations and deposition
 - Step 4 : Cost-benefits analysis
- Conclusion

Introduction

- Air pollution remains one of the most sensitive environmental fields in Europe: In its 2018 report on air quality in Europe, the European Environment Agency estimates that more than 500,000 premature deaths are due to air pollution in EU-28 (~400,000 due to PM_{2.5}).
- Anthropogenic sources of air pollution are various and numerous: industry, residential heating, agriculture, road and off-road traffic.
- Ship heavy fuel oil is the most harmful transport fuel in use today.

Air quality in Europe

- Because of complex chemical and dynamical processes in the atmosphere, ambient atmospheric concentrations (air quality) are generally not linearly dependent from emissions.
- This is particularly true for:
 - ozone which is a secondary pollutant issued from nitrogen oxides and volatile organic compounds transformation,
 - particulate matter (PM) which includes primary and secondary compounds.
- Sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃) and particulate matter (PM₁₀ and PM_{2.5}) have harmful impacts on human health and ecosystems.

Brief presentation of the ECAMED study

• Stakeholders of the ECAMED project:

Brief presentation of the ECAMED study

General methodological aspects:

- Reference period for traffic datas: 2015
- Pollutants: SO₂, NO₂, O₃, PM
- Meteorology: 2010
- **Domain:** all the Mediterranean Sea
- Constant traffic in scenarios
- Emission factors from litterature
- **Concentrations** simulated by a French consolidated chemistry-transport model (CHIMERE)
- Mortality and morbidity: calculated and monetized thanks to the model Alpha Risk Poll
- Qualitative analysis of the impacts on ecosystems
- **Costs** calculated thanks to fuel and technologies prices

ECAMED set-up: 4 steps

- <u>Step 1:</u> detailed description of maritime shipping traffic in the Mediterranean Sea
- **<u>Step 2:</u>** calculation of current emissions and scenarios
- <u>Step 3:</u> simulation of air pollutant concentrations and deposition
- <u>Step 4:</u> costs-benefits analysis

Step 1: Detailed description of ship traffic

CITEPA

 AIS (Automatic identification System) databases combined with Lloyd's register FAirPlay allow a detailed description of maritime traffic in the Mediterranean sea (for the years 2015 and 2016)

Step 2: calculation of current emissions and scenarios

• Equation used to calculate emissions based on AIS data from

ships:

$$E(i, lon, lat, t) = \sum_{j} \sum_{m} \sum_{p} \left[\Delta t \sum_{e} (P_e. LF_e(lon, lat, t). EF_{e,i,j,m,p}) \right]$$

- E = emission (tonnes),
- i = pollutant (NOx, NMVOC, PM, etc.)
- lon = *ship's* longitude
- lat = ship's latitude
- t= date and time of the ship on each lat/lon location data.
- j = engine type (slow-, medium-, and high-speed diesel, gas turbine and steam turbine).
- m = fuel type (bunker fuel oil, marine diesel oil/marine gas oil),
- p = the different phase of trip (cruise, hoteling, manoeuvring).
- Δt = duration since the last geographical position
- e = engine category (main, auxiliary)
- LF = engine load factor (%) at each geographical position
- P = engine nominal power (kW)
- EF = emission factor (kg/kWh) depending on type of vessel.

HYPOTHESIS

- Engine age= Keel laid date or Construction date-1
- Auxiliaries engines are «Medium Speed Diesel»
- Auxiliaries engines and Boilers are using the same fuel as the main engine.
- NOx EF <2000 = NOx EF 2000
- Emissions pollutants(*):
 FC, CO₂, CH₄, N₂O,
 NMVOC, NOx, SOx, CO, NH₃,
 TSP, PM₁₀, PM_{2.5}, BC,
 PCB, PCDD/F, HCB , BaP

(*) sources: Ricardo (2015), IVL (2004), EMEP/EEA (2016), Cooper (2005), Marpol VI

Step 2: calculation of current emissions and scenarios **CITEPA**

5 scenarios : •

- Reference situation (2015)
 - $S_{max} = 2.7\%$

- except for vessel more than 2h at berth in EU ports - S_{max} =0.1%, - and passengers vessel in EU-Exclusive Economic Zone - S_{max} =1.5%.

2020 reference scenario (IMO Global Sulphur Cap 2020)

- $S_{max}=0.5\%$

- except for vessel more than 2h at berth in EU ports -Smax=0.1%.

SECA scenario

- $S_{max}=0.1\%$

- Scenario SECA/NECA 50
 - 50 % of vessel compliant with Tier III
 - S_{max}=0.1%
- Scenario SECA/NECA 100
 - 100% of vessel compliant with Tier III
 - S_{max}=0.1%

Step 2: calculation of current emissions and scenarios

Results:

- The IMO Global Sulphur Cap 2020 will
 - reduce the emissions of :
 - SOx by 80 %
 - PM by 72 %
 - BC by 30 %
 - NOx by 5 %
- The implementation of a SECA :
- SOx by 95 %
- PM by 80 %
- BC by 51 %
- The implementation of a NECA will reduce nitrogen emissions by :
 - 38 % if 50 % of ships are TIER III
 - and 77 % if all the ships are TIER III

Step 3: Simulation of air pollutant concentrations and deposition CITEPA

• Daily Evolution of PM_{2.5} concentrations reduction (in-land) - July 2015

Latitude

Longitude

Step 3: Simulation of air pollutant concentrations and deposition CITEPA

• Daily Evolution of NO₂ concentrations reduction (in-land) - July 2015

Latitude

Longitude

Step 3: Simulation of air pollutant concentrations and deposition CITEPA

• Impacts on annual means: differences between 2020 Global cap and

SECA-NECA

Absolute differences of NO₂ annual averages

Absolute differences of O₃ annual averages

Absolute differences of PM_{2.5} annual averages

• Fuel prices used in the different scenarios calculations

- Synthesis of health impacts (mortality and morbidity) considered in the ECAMED Health Impact Assessment and their monetary unit values
- Alpha-RiskPoll tool used developed
 by EMRC (Mike Holland) for use in
 evaluation of health benefits of
 European air policy Directives
- Use of identical monetary values in all countries for the ECAMED study
- All results presented are for 2015
- All monetary values expressed in €
 price base 2015

Health impact	Impact unit	Pollutant	Unit valuation (€ price base 2015)
Acute Mortality (All ages) median VOLY*	Premature deaths	O ₃	66 728
Respiratory hospital admissions (>64)	Cases		2 567
Cardiovascular hospital admissions (>64)	Cases		2 567
Minor Restricted Activity Days (MRADs all ages)	Days		49
Chronic Mortality (All ages) LYL median VOLY	Life years lost	PM _{2.5}	66 728
Chronic Mortality (30yr +) deaths mean VSL**	Premature deaths		2 567 364
Infant Mortality (0-1yr) mean VSL	Premature deaths		3 851 047
Chronic Bronchitis (27yr +)	Cases		61 987
Bronchitis in children aged 6 to 12	Cases		680
Respiratory Hospital Admissions (All ages)	Cases		2 567
Cardiac Hospital Admissions All ages)	Cases		2 567
Restricted Activity Days (all ages)	Days		106
Asthma symptom days (children 5-19yr)	Days		49
Lost working days (15-64 years)	Days		150
Bronchitis in children aged 5 to 14	Cases	NO ₂	680
Respiratory Hospital Admissions (All ages)	Cases		2 567
Chronic Mortality (All ages) LYL median VOLY	Life years lost		66 728
Chronic Mortality (30yr +) deaths mean VSL	Premature deaths		2 567 364

(*) VOLY = Value of Life Year ; (**) VSL = Value of Statistical Life ; values for the willingness to pay by society to reduce the risk of premature mortality.

Concentrations response functions according to WHO/Europe (2013) - HRAPIE study - Health Risks of Air Pollution in Europe. 67% of NO_2 chronic mortality accounted for in monetary cost (benefit) to avoid risk of double counting with $PM_{2.5}$ chronic mortality.

• Reduced mortality (premature deaths) from PM_{2.5}

- Avoided premature deaths in 2015 owing to the reduction in
 - PM_{2.5} population exposure

• Health benefits for the ECAMED domain

VOLY: Value Of Life Year

VSL: Value of Statistical Life

CITEPA

• SECA NECA related to Reference 2020 - Benefit (in M€)

- Whatever the mitigation scenario, benefits are always
 - significantly higher than the costs

- In the worst-case scenario, health benefits of implementing a SECA/NECA are 3 times higher than costs,
- France hopes that the French study, the EU study and the REMPEC one will lead to a rise of awareness about the important need for an ECA in the Mediterranean Sea.
- Report available here: <u>https://www.ecologique-</u>

solidaire.gouv.fr/sites/default/files/R_DRC-19-168862-00408A_ECAMED_final_Report_V5.pdf

- **2019:** Informal preparatory work for a decision of the European Union Council- Diplomatic Initiatives to Mediterranean Countries
- 2nd semester 2019: decision of the European Union Council
- March 2020: submission to IMO
- April 2020: approval of the ECA by IMO (1^{rst} phase of the decision)
- Autumn 2020 or July 2021: adoption of the ECA by IMO (2nd phase of the decision) Entry into force fixed during the negotiations
- 2022: ECA zone entry into force target

Thank you for your attention jean-marc.andre@citepa.org

INERIS

Plan

Construisons ensemble l'avenir de la Méditerranée

