
Task Force on Emission Inventories & Projections Meeting hosted virtually by Slovakia, 4th-6th May 2021 Combustion and industry expert panel

Biodiesel emission factors in energy production Preliminary remarks

Carlo Trozzi Techne Consulting (Italy) carlo.trozzi@ techne-consulting.com

(Techne Consulting, Italy – carlo.trozzi@ techne-consulting.com)

IEA Bioenergy power generation (TWh) in the Sustainable Development Scenario, 2000-2030

Task Force on Emission Inventories & Projections - Combustion and industry expert panel

(Techne Consulting, Italy – carlo.trozzi@ techne-consulting.com)

Guidebook 2019

Actual Efs available for 1.A.1 Energy industries:

- Table 3-6 Tier 1 emission factors for source category 1.A.1.a using gas oil => assumed as Table 4-4
- Table 3-18 Tier 2 emission factors for source category 1.A.1.a, gas turbines using gas oil
- Table 3-19 Tier 2 emission factors for source category 1.A.1.a, reciprocating engines using gas oil
- Table 4-4 Tier2 emission factors for source category 1.A.1.b, process furnaces using residual oil

No Efs for biofuels

In the following we compare Efs for gasoil with some studies about biofuels for energy production

Task Force on Emission Inventories & Projections - Combustion and industry expert panel

(Techne Consulting, Italy – carlo.trozzi@ techne-consulting.com)

Tier 1

Tier2 - Table 4-4 Tier2 emission factors for source category 1.A.1.b, process furnaces using residual oil

Tier 1 default emission factors								
	Code Name							
NFR Source Category	1.A.1.a Public electricity and heat production							
Fuel	Gas oil							
Not applicable								
Not estimated	NH₃,	PCB,	Benzo(b)fluoranthene,					
	Benzo(k))fluoranthene, HCB						
Pollutant	Value	Unit	95% confidence interval Lower Upper		Reference			
NOx	65	g/GJ	22	195	US EPA (1998), chapter 1.3			
со	16.2	g/GJ	4	65	US EPA (1998), chapter 1.3			
NMVOC	0.8	g/GJ	0.48	1.28	US EPA (1998), chapter 1.3			
SOx	46.5	g/GJ	4.65	465	See Note			
TSP	6.5	g/GJ	2	20	US EPA (1998), chapter 1.3			
PM ₁₀	3.2	g/GJ	1	10	US EPA (1998), chapter 1.3			
PM _{2.5}	0.8	g/GJ	0.3	2.5	US EPA (1998), chapter 1.3			
BC	33.5	% of PM _{2.5}	% of PM _{2.5} 28.9 38		Hildemann et al., 1981 &			
					Bond et al., 2006			
Pb	4.07	mg/GJ	0.41	40	US EPA (1998), chapter 1.3			
Cd	1.36	mg/GJ	0.14	15	US EPA (1998), chapter 1.3			
Hg	1.36	mg/GJ	0.14	15	US EPA (1998), chapter 1.3			
As	1.81	mg/GJ	0.18	20	US EPA (1998), chapter 1.3			
Cr	1.36	mg/GJ	0.14	15	US EPA (1998), chapter 1.3			
Cu	2.72	mg/GJ	0.27	30	US EPA (1998), chapter 1.3			
Ni	1.36	mg/GJ	0.14	15	US EPA (1998), chapter 1.3			
Se	6.79	mg/GJ	0.68	70	US EPA (1998), chapter 1.3			
Zn	1.81	mg/GJ	0.18	20	US EPA (1998), chapter 1.3			
PCDD/F	0.5	ng l-	0.25	1	UNEP, 2005			
		TEQ/GJ						
Indeno(1,2,3-cd)pyrene	6.92	µg/GJ	3.46	13.8	US EPA (1998), chapter 1.3			

 Table 3-6
 Tier 1 emission factors for source category 1.A.1.a using gas oil

Note:

For conversion of the US EPA data the heating value as provided in the reference has been used (140 MMBTU/10³ gal). This has been converted to NCV using a factor of 0.95. Furthermore, units have been converted using 1055.0559 J/BTU and 453.59237 g/lb.

The factor for SO_x assumes no SO₂ abatement and is based on 0.1 % mass sulphur content.

The TSP, PM₁₀ and PM_{2.5} emission factors represent filterable PM emissions. Note that condensable PM emission factors are also provided in US EPA (1998), Chapter 1.3.

Task Force on Emission Inventories & Projections - Combustion and industry expert panel

(Techne Consulting, Italy – carlo.trozzi@ techne-consulting.com)

Tier 2 emission factors for reciprocating engines using gas oil

		Tier 2 em	nissi	ion factor	s						
	Code	Name									
NFR Source Category	1.A.1.a										
Fuel	Gas Oil										
SNAP (if applicable)	010105 Public power - Stationary engines										
Technologies/Practices	Large stationary CI reciprocating engines										
Region or regional	NA										
conditions											
Abatement technologies	NA	NA									
Not applicable											
Not estimated	NH ₃										
Pollutant	Value	Unit	Unit		nfidence	Reference					
				inte	erval						
				Lower Upper							
NOx	942	g/GJ		500	1380	Nielsen et al., 2010					
CO	130	g/GJ		30	230	Nielsen et al., 2010					
NMVOC	37.1	g/GJ		18.5	55.6	US EPA (1996), chapter 3.4					
SOx	46.5	g/GJ		4.65	465	See Note					
TSP	28.1	g/GJ		14.1	56.2	US EPA (1996), chapter 3.4					
PM ₁₀	22.4	g/GJ		11.2	44.8	US EPA (1996), chapter 3.4					
PM _{2.5}	21.7	g/GJ		10.8	43.4	US EPA (1996), chapter 3.4					
BC	78	% of PM	2.5	63	93	Hernandez et al., 2004					
Pb	4.07	mg/GJ		0.41	40.7	US EPA (2010), chapter 1.3					
Cd	1.36	mg/GJ		0.14	13.6	US EPA (2010), chapter 1.3					
Hg	1.36	mg/GJ		0.14	13.6	US EPA (2010), chapter 1.3					
As	1.81	mg/GJ		0.18	18.1	US EPA (2010), chapter 1.3					
Cr	1.36	mg/GJ		0.14	13.6	US EPA (2010), chapter 1.3					
Cu	2.72	mg/GJ		0.27	27.1	US EPA (2010), chapter 1.3					
Ni	1.36	mg/GJ		0.14	13.6	US EPA (2010), chapter 1.3					
Se	6.79	mg/GJ		0.68	67.9	US EPA (2010), chapter 1.3					
Zn	1.81	mg/GJ		0.18	18.1	US EPA (2010), chapter 1.3					
PCDD/F	0.99	ng TEQ/GJ	I-	0.1	10	Nielsen et al., 2010					
HCB	0.22	µg/GJ		0.022	2.2	Nielsen et al., 2010					
PCBs	0.13	ng TEQ/GI	I-	0.013	1.3	Nielsen et al., 2010					
Benzo(a)pyrene	0.116	mg/GJ	ng/GJ 0.0582 0.116 US EPA (199 ("Less than"		US EPA (1996), chapter 3.4 ("Less than" value based on method detection limits)						
Benzo(b)fluoranthene	0.502	mg/GJ		0.251	0.754	US EPA (1996), chapter 3.4					
Benzo(k)fluoranthene	0.0987	mg/GJ		0.0493	0.0987	US EPA (1996), chapter 3.4 ("Less than" value based on method detection limits)					
Indeno(1,2,3-cd)pyrene	0.187	mg/GJ		0.0937	0.187	US EPA (1996), chapter 3.4 ("Less than" value based on method detection limits)					

Table 3-19 Tier 2 emission factors for source category 1.A.1.a, reciprocating engines using

Notes:

For conversion of the US EPA data the values have been converted to NCV using a factor of 0.95. Furthermore, units have been converted using 1055.0559 J/BTU and 453.59237 g/lb.

The factor for SO_x assumes no SO₂ abatement and is based on 0.1 % mass sulphur content using EF calculation from subsection 3.4.2.2 of the present chapter. The TSP, PM_{10} and PM_{25} emission factors represent filterable PM emissions. Note that a condensable PM emission factor is also provided in US EPA (1996), Chapter 3.4.

Task Force on Emission Inventories & Projections - Combustion and industry expert panel

(Techne Consulting, Italy – carlo.trozzi@ techne-consulting.com)

Some researches about emissions

- Miller (2008), C. Andrew Miller, Characterizing Emissions from the Combustion of Biofuels, .S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/069, 2008.
- Komarian (2013), L. N. Komariah, S. Arita, Novia, S. S. Wirawan, and M. Yazid, Journal of Renewable and Sustainable Energy 5, 052005 (2013); doi: 10.1063/1.4822036
- ERG (2007), Eastern Research Group, Emission Factors for Priority Biofuels in Minnesota, Minnesota Pollution Control Agency, June 30, 2007

Task Force on Emission Inventories & Projections - Combustion and industry expert panel

(Techne Consulting, Italy – carlo.trozzi@ techne-consulting.com)

Emission factors comparison

	Miller (2008)		Komariah(2013)		ERG (2007)		Guidebook		
	boiler			fire tube boiler				Gasoil	
						Biodiesel	Biodiesel		Tier 2
g/GJ	Gasoil	Soy	Animal	Gasoil	Palm	boiler	engines	Tier 1	engines
NOx	42,65	47,72	48,58	1361,1	1820,2	46,86	2295,78	65	942
СО	0,74	1,23	1,35	48,3	39,2	23,65	184,87	167,2	130
SO2	13,2	1,99	1,35					46,5	46,5
PM tot	5,2	1,1	1,25			0,86	47,29	6,5	28,1

Some preliminary consideration:

- Lack of information about biodiesel in GB and also for gasoil in boilers
- In general NOx, PM and CO emissions seems greater for biodiesel
- Some focus can be useful for future development of biodiesel toward carbon neutrality target

Task Force on Emission Inventories & Projections - Combustion and industry expert panel