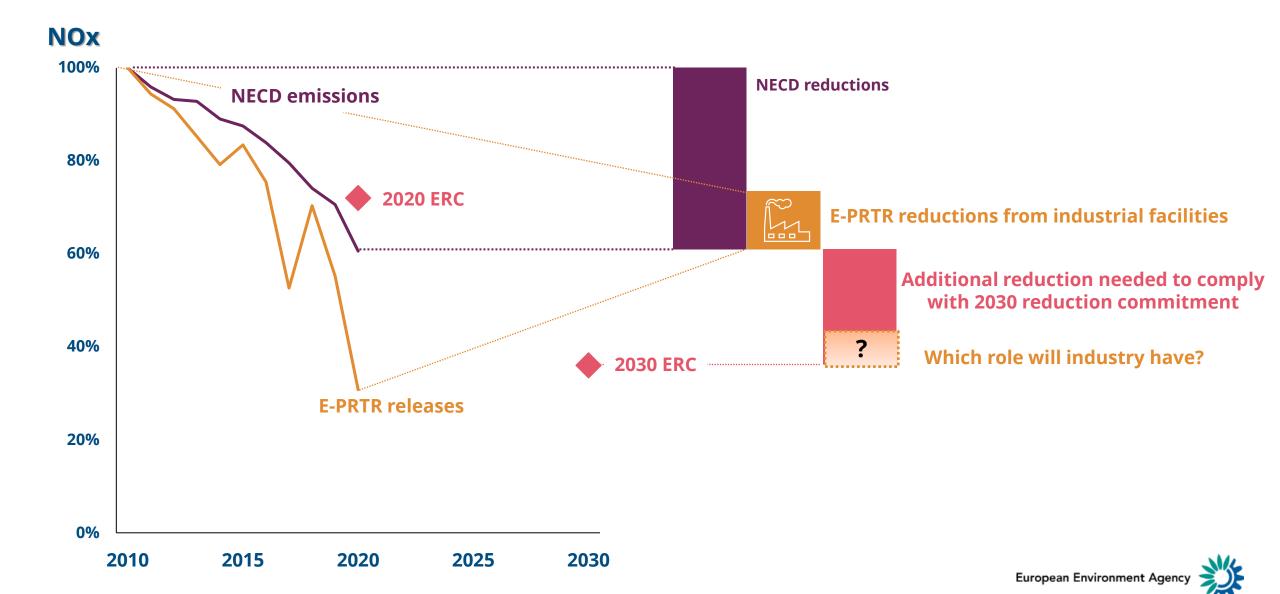
Updates on emissions reporting

Federico Antognazza

Content

 THE CONTRIBUTION OF THE INDUSTRIAL SECTOR TO THE 2020 EMISSION REDUCTION COMMITMENTS AND ITS ROLE IN THE LONG TERM

USE OF COPERNICUS DATA TO ASSESS NO_x LCP EMISSIONS



European Environment Agency

Work performed by ETC/HE partner (Aether): Lucy Garland and Katrina Young

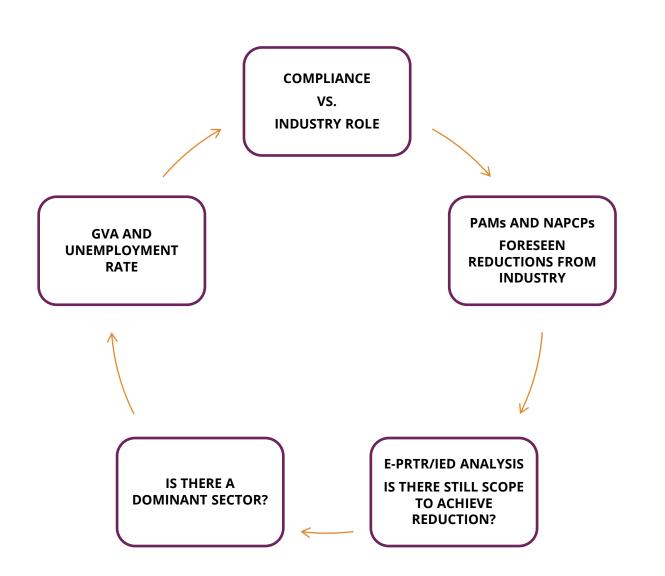
Contribution of industrial sector in achieving emissions reduction commitments

Data analysis based on

NECD INVENTORY E-PRTR/IED DATASET

NECD PAMs

NECD PROJECTIONS


NAPCPs

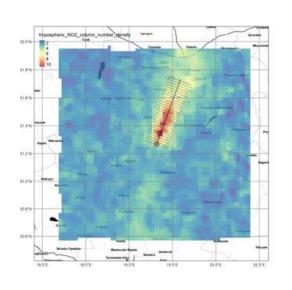
Awareness of data gaps in E-PRTR:

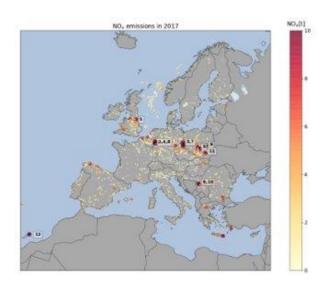
- DE and SK never reported under new E-PRTR/LCP (no data since 2017)
- IT and MT haven't reported 2020
- LT haven't reported 2019 and 2020

Main content

EIONET Report (Q3/Q4)

EEA Briefing Dataviewer Q1 2023


USING COPERNICUS DATA TO ASSESS LARGE COMBUSTION PLANTS (LCP) Nox EMISSION LEVEL


Work performed by ETC/DI partner (NILU): Kerstin Stebel

NO₂ from TROPOMI on board Sentinel-5P

Scoping Study in 2021

	Name of power plant	Country	# TROPOMI overpasses total – selected for 2018 / 2019 / 2020	Top-down NO ₁ emissions [kg/s]			Reported NO _x emissions [kg/s]		Source
				2018	2019	2020	2018	2019	
01	Elektrownia Belchatów	PO	350 - 47 / 33 / 40	0.93	0.74	0.93	0.954	0.793	E- PRTR ³
02	Kraftwerk Neurath	GE	342-30/23/18	0.42	0.89	0.33	0.685		NECD ⁴
03	Kraftwerk Jänschwalde	GE	357 - 26 / 20 / 08	0.55	0.35	0.28	0.596		NECD
04	Kraftwerk Niederaußem	GE.	overlapping plume with Kraftwerk Neurath				0.552		NECD
05	Drax Power Station	UK	244-10/03/15	N/A	N/A	N/A	0.387	0.259	E-PRTR
06	TPP Nikola Tesla B	CZ	551-42/61/42	0.51	0.42	0.62	0.381	0.358	E-PRTR
07	Kraftwerk Boxberg	GE	345 - 14 / 18 / 14	0.39	0.46	0.31	0.425		NECD
08	Kraftwerk Weisweiler	GE	310 - 19 / 08 / 01	N/A	N/A	N/A	0.365		NECD
09	Elektrownia Kozienice	PO	373-16/22/11	in final report			0.306	0.339	E-PRTR
10	TPP Nikola Tesla A	CZ	overlapping plume v	rlapping plume with TENT B				0.444	E-PRIR
11	Elektrownia Polaniec	PO	398-04/06/01	in final report			0.246	0.205	E-PRTR
12	Central Diesel Punta Grande	ES	618 - 32 / 53 / 45	0.26	0.26	0.29	0.355	0.346	E-PRTR

- Impact of background emissions
- Proximity

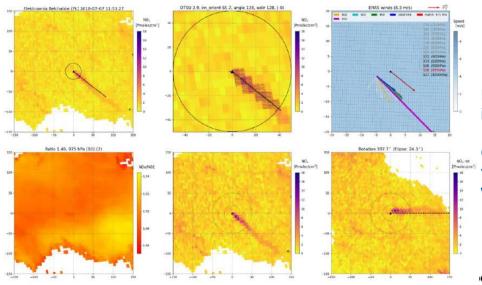
Data and pre-processing steps

Satellite data

TROPOMI tropospheric NO₂ vertical column density (Level 2, processor version 1)

Meteorological data and ozone

ECMWF ERA5 data for the time period January 2018 – December 2020.


Satellite instruments can only observe tropospheric NO₂

 NO_x / NO_2 conversion factor for the photochemical steady state

$$\frac{[NO_x]}{[NO_2]} = 1 + \frac{[NO]}{[NO_2]} = 1 + \underbrace{J_{NO_2}}_{k_{NO+O_2} * n_{O_3}}$$

Photolysis rate of $NO_2(J_{NO_2})$

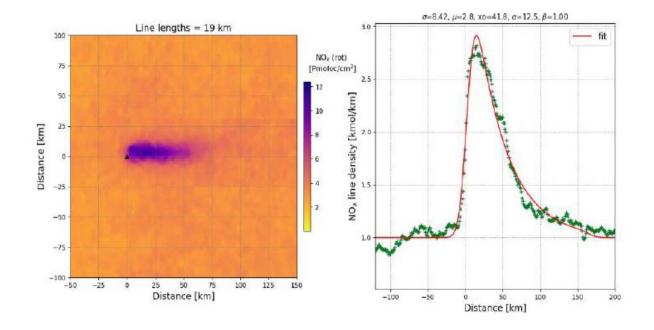
Rate constant for the reaction of NO with ozone (O_3) (k_{NO+O_2})

Rotation of all plumes to increase SNR

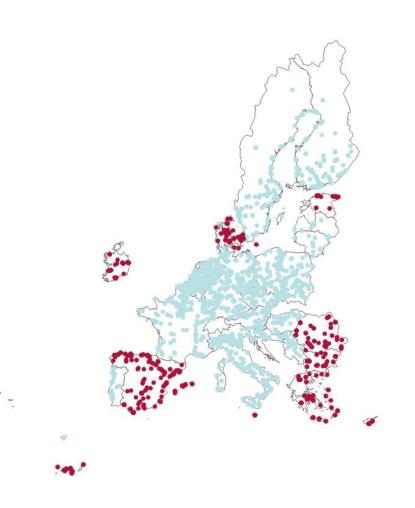
Choice of pressure level to be used for ERA5 winds and O₃

... fit based emission estimates (III)

TROPOMI NO₂ line density (S)


$$S = \int_{y_l}^{y_h} NO_x * dy$$

 $\tau = x_0 w$


effective lifetime

 $E = \alpha / \tau$

NO_x emission rate

Focus of 2022 work

SENSITIVITY ANALYSIS

UNCERTAINTY ESTIMATION

+600 LCPS

ON/OFF DETECTION

GAP FILLING

IMPROVING QA

Bulgaria, Cyprus, Denmark, Estonia, Greece, Ireland, Malta Romania, Spain

