

Atmosphere Monitoring

CAMS European emissions

Development and applications of emissions data in CAMS and beyond

presented by Jeroen Kuenen (TNO)

OUTLINE

Atmosphere Monitoring

- Introduction to CAMS-REG (European) emissions
 - Some analysis of emission data done under CAMS
- What are emissions data used for in CAMS?
- Application of emissions data

CAMS European emissions

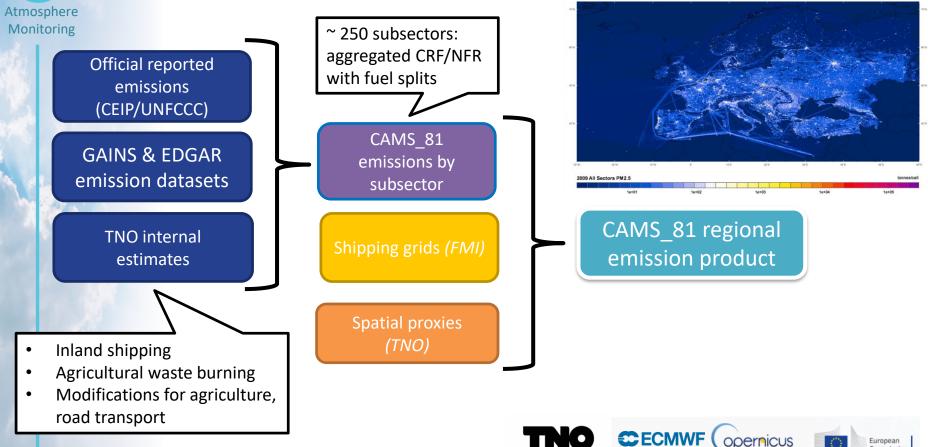
HISTORY

Atmosphere

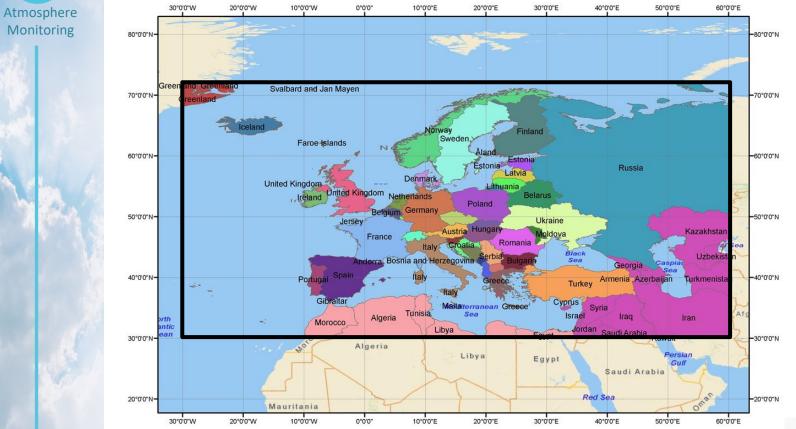
Mo History

- 1. TNO-MACC 2003-2007 (not CO₂)
- 2. TNO-MACC-II (2003-2009) (not CO₂)
- 3. TNO-MACC-III (2000-2011) + CO₂
- 4. No more updates provided until the start of CAMS emissions project (CAMS_81)

CANAS Q1 started Sant 2017

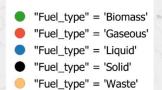

Policy (related) use

- Input for MACC/CAMS AQ forecasts over Europe + reanalysis
- Input for national AQ forecasts and research –often use national emission data but need the outside domain; list of users very long!
- 3. Benchmark for other initiatives


Deliverables (Short-term)	Done by
D81.1.1.1 Regional emissions for 2015	March 2018
D81.1.1.2 European emissions time series 2000-2015	Sept 2018
D81.1.1.1 Regional emissions for 2016	March 2019

METHODOLOGY IN A NUTSHELL

EUROPEAN DOMAIN



SPATIAL DISTRIBUTION (latest version)

Atmosphere	GNFR	Key spatial proxies used	Detail / Comment
Monitoring	A_PublicPower	Own point source database developed based on E- PRTR / LCP / CARMA	"Remaining" emissions distributed using CORINE industrial area
	B_Industry	E-PRTR reporting	"Remaining" emissions distributed using CORINE industrial area
	C_SmallComb	Population density; for wood specific proxy derived based on availability of wood & heating demand	
A due	D_Fugitives	Own point source databases	
	E_Solvents	Population / CORINE industrial area	
	F_RoadTransport	Open street map / Open transport map	Fleet distribution over vehicle types / road types obtained from EMISIA
	G_Shipping	AIS based shipping tracks (FMI)	Existing TNO map used for inland shipping
	H_Aviation	Specific locations of airports	Point source data
	I_OffRoad	Rail network; population density	CORINE Arable land, industrial area for agri/industrial off-road
	J_Waste	Point sources: WWTPs (EEA), own point source database for waste incineration plants	Population/industrial area for non-PS
100	K_AgriLivestock	Gridded livestock (FAO)	
	L_AgriOther	Arable land (CORINE)	

European Commission Atmosphere Monitoring CO2 emissions from public power and heat plants in Germany, by fuel type and emission quantity

C

DATASETS

Atmosphere Monitoring

Pollutants covered:

- AP version: NOx, SO2, NMVOC, CO, NH3, PM10, PM2.5, CH4
- GHG version: CO2_ff, CO2_bf, CH4

Dataset	Resolution	Sector classification	Year(s) covered	Version released	Availability
CAMS-REG- v1.1	0.125° x 0.0625°	SNAP (13 sectors)	2015	April 2018	Open
CAMS-REG- v2.2.1	0.1° x 0.05°	GNFR (15 sectors)	2000-2015	December 2018	Restricted (CAMS users), will be public
CAMS-REG- v3.1	0.1° x 0.05°	GNFR (15 sectors)	2016	March 2019	Restricted (CAMS users), will be public

And more is to come in the next years...

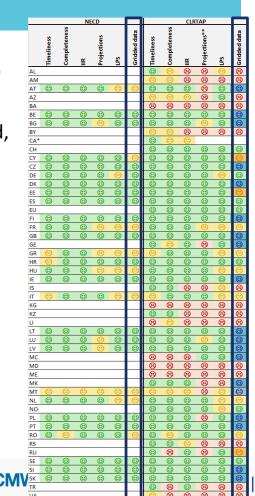
opernicus

European Commissio

CECMWF

GRIDDED DATA

Atmosphere Monitoring

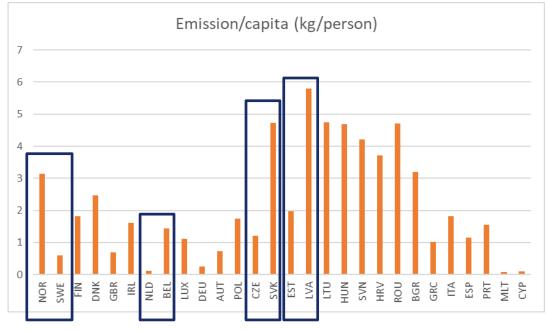

"Smiley table" published by CEIP (most recent for 2018 reporting)

- Green: gridded data at 0.1°x0.1° for at least 4 years reported
- Yellow/orange/blue: only a part of the required data reported, or not in time
- Red: no gridded data reporting at all

To create the "EMEP emissions", CEIP performs some basic gapfilling for missing countries/years as needed, the results are provided to MSC-W/MSC-E, this is input for the S/R calculations

Note that:

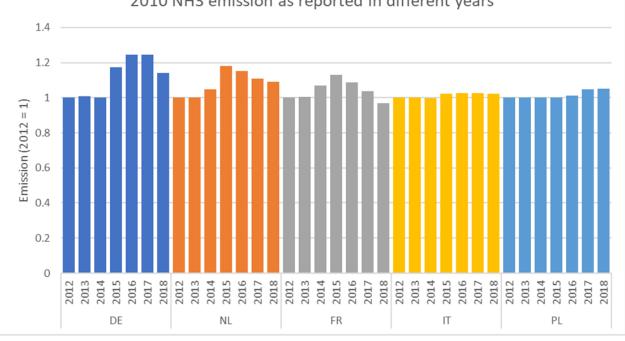
- Completeness: green means 4+ years of gridded data while CAMS needs annual data from 2000 onwards
- Even when all is reported, consistency at borders and comparability between countries are potential issues



CONSISTENCY IN EMISSION REPORTING

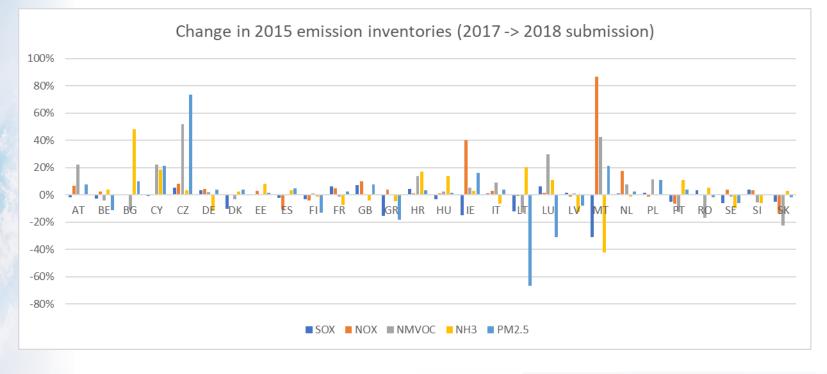
Atmosphere Monitoring

- Consistency remains an issue, also in CAMS-REG inventories
- Example for PM2.5 from small combustion activities from CAMS-REG-v2 (latest version)
- Note the differences between:
 - Norway vs Sweden
 - Netherlands vs Belgium
 - Czech Rep vs Slovakia
 - Estonia vs Latvia
- Not the objective of CAMS to harmonize these

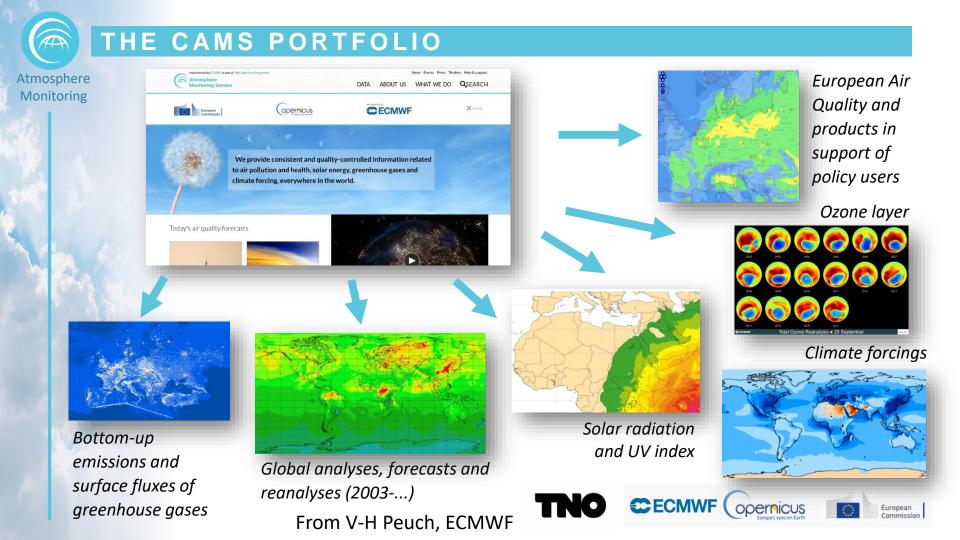


CONSISTENCY IN EMISSION REPORTING

Atmosphere Monitoring

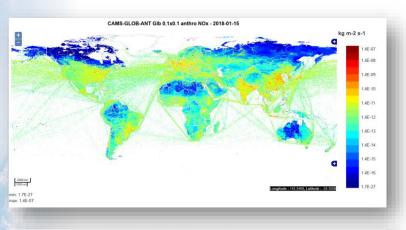

- EMEP emissions are reported by countries every year again
- Methodologies to calculate emissions change over time => progressing science
- This implies that emissions for a given historical year can change considerably from one year to the next
 2010 NH3 emission as reported in different years

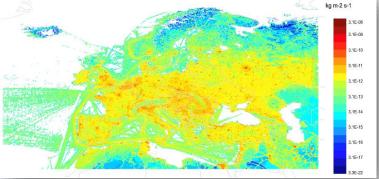
RECALCULATIONS

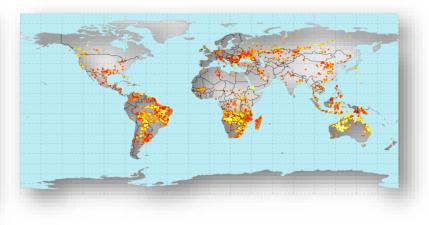

Atmosphere Monitoring

• Recalculations are still very significant and important to take into account!!!

Source: CEIP/reporting 2018 (nat'l totals)






CAMS EMISSION PRODUCTS

Atmosphere Monitoring

CAMS-REG-AP TNO 0.0625x0.1250 anthro PM10 - 2015-01-01

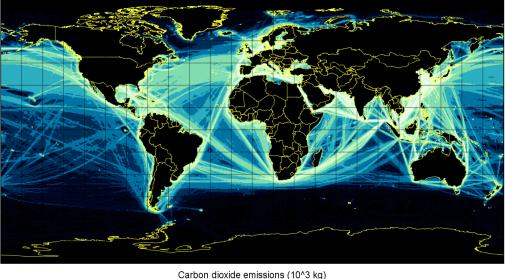
- Fire emissions
- Global anthropogenic emissions

CECMWF

Regional anthropogenic emissions

opernicus

European


• Natural emissions

NEW: CAMS BOTTOM-UP EMISSIONS

Atmosphere Monitoring

1000.0

10000 0

100000.0

European

100 0

Emissions are both an input to CAMS global and regional systems and a popular product. Entirely new datasets have been released covering 2003 to 2019 (extrapolation). Example: CO₂ emissions from shipping activities (provider: FMI, Finland).

PRODUCTS IN SUPPORT OF POLICY USERS

Atmosphere Monitoring

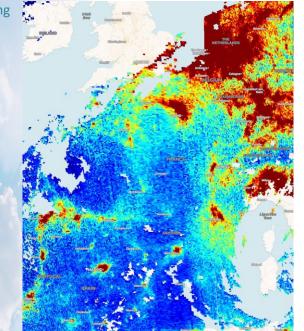
Assess the effect of emission reductions on daily forecasts

-125	-10	— 0Ì	58
	TTTTTT		
	-68 -49 -30 -11	8 27	

update

CAMS_ACT : O3, PM10 (PM2.5 coming)

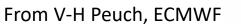
http://policy.atmosphere.copernicus.eu/CAMS_ACT.html



From V-H Peuch, ECMWF

NEW: UPTAKE OF SENTINEL-5P IN CAMS

Atmosphere Monitoring

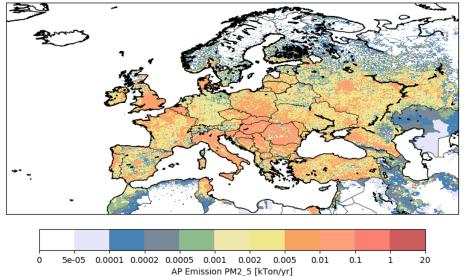

Example: NO₂ tropospheric column from Copernicus Sentinel-5P (7/10/2018)

Thanks to excellent collaboration with ESA and entities in charge of Level-2 processing, 6 products are now used in the CAMS system (assimilated, monitored or off-line tested).

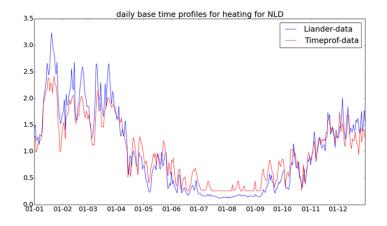
Detailed daily operational statistics are available here: https://atmosphere.copernicus.eu/charts/cams_monitoring/

Species	Status	Since
Ozone	Operational assimilation	4/12/2018
NO ₂	Operational monitoring	11/07/2018
СО	Operational monitoring	22/11/2018
SO ₂	Operational monitoring	22/11/2018
нсно	Operational monitoring	22/11/2018
CH ₄	Off-line monitoring	22/11/2018

Europear



BEYOND ANNUAL EMISSIONS...


EMISSION MODELLING (IN SPACE & TIME)

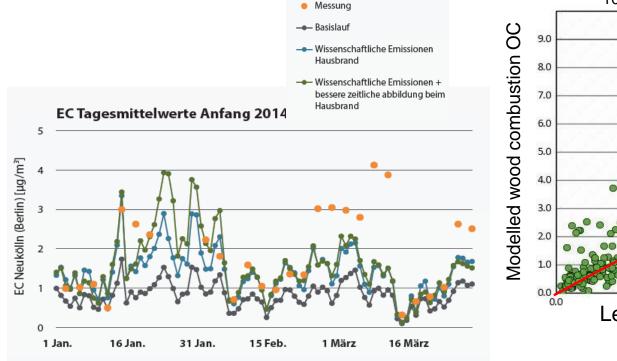
C - Other Stationary Combustion (2015)

Novel spatial distribution developed for wood use depending on wood "availability" (more use near forests) Note discrepancies at country borders => artefact of reporting

Timeprofile 2011 DEU cat: Residential combustion - coal 2.5 Base cnt-ave pop-ave 2.0 Daily time 1 0.1 0.5 0.0 ñ 50 100 150 200 250 300 350 400 Day of the year

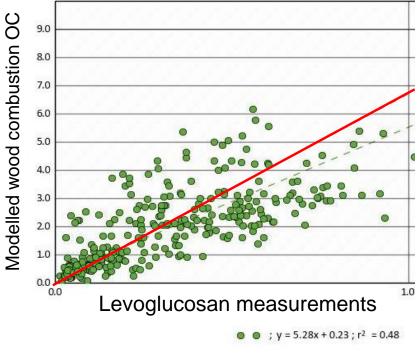
TIMING

- Under CAMS emission project, a report on temporal profiles for each sector was published recently
- This report provides state of the art information on how to break down annual emissions in time (both at global and European level)
- Useful for TFEIP to refer to these kind of reports for up-to-date information on fine time scale emissions


D81.6.2.1: Report on emission temporal profiles for the global and regional scales

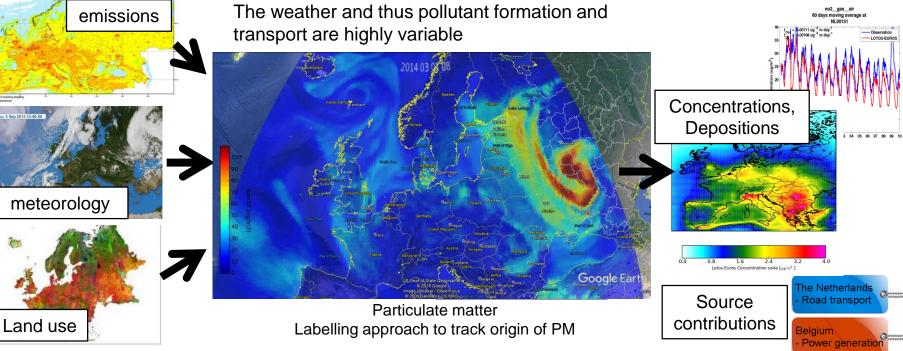
CAMS_81 – Global and Regional emissions

Issued by: BSC / Marc Guevara Date: 08/02/2019 Ref: CAMS81_20175C1_D81.6.2.1_201902_v1.docx CAMS81_20175C1_D81.6.2.1_201902_Temporal-Profiles_v1 Official reference number service contract: 2017/CAMS_81/SC1


TNO innovation for life

IMPACT ON MODELLED EC AND OC IN BERLIN AND EASTERN GERMANY

PM source apportionment


10 locations in eastern Germany

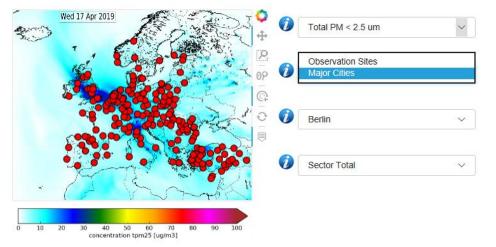
From literature: Levoglucosan : OC = 1 : 6.7 (red line)

CHEMISTRY TRANSPORT MODELS PROVIDE THE LINK BETWEEN EMISION AND CONCENTRATION

innovation for life

PM source apportionment

GOAL OF TOPAS

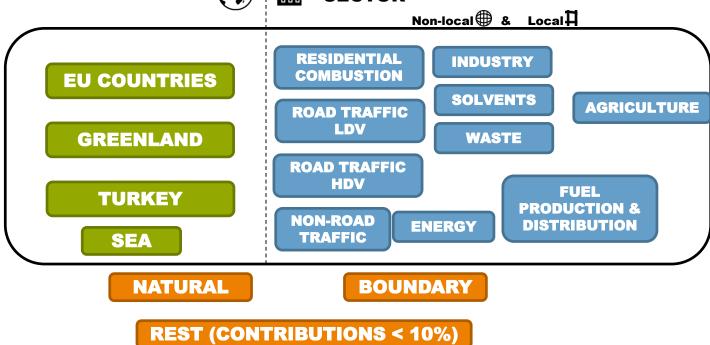

To quantify the origin of air pollution on a daily basis using our latest insights.

The prototype TNO Operational Pollution Apportionment Service (TOPAS) is based on the chemical transport model LOTOS-EUROS with its labeling approach forced by TNO emission information and CAMS products.

TOPAS aims to differentiate the origin of PM in:

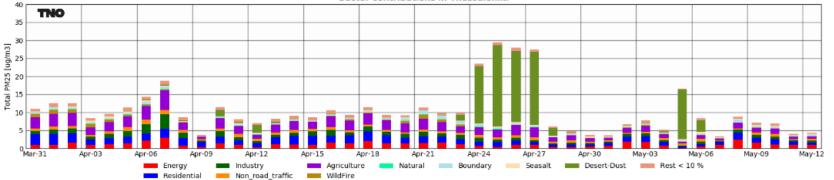
- Local contributions
- Source sector contributions
- Transboundary contributions
- Natural contributions

Daily modelled PM10/PM2.5 based on hourly model output (model resolution 0.5x0.25°)



The innovation for life

WE EXPLOIT THE LABELLING SYSTEM OF LOTOS-EUROS – TWO SIMULATIONS IN PARALLEL GEOGRAPHICAL () SECTOR Non-local () & Local


innovation for life

TNO topas (beta version)

40 TNO 35 Total PM25 [ug/m3] 10 _ _ Apr-30 Mar-31 Apr-03 Apr-06 Apr-09 Apr-12 Apr-15 Apr-18 Apr-21 Apr-24 Apr-27 May-03 May-06 May-09 May-12 GRC GRC POL UKR WildFire Boundary Seasalt Desert-Dust Rest < 10 %</p> TUR ROU YUG Natural

Country contributions in Thessaloniki

TNO innovation for life

THANK YOU FOR YOUR ATTENTION

innovat for life Take a look: HTTPS://TOPAS.TNO.

JEROEN.KUENEN@TNO.NL