The Contribution of Brake Wear Emissions to Particulate Matter in Ambient Air

Dan Wakeling
Dr David Carslaw, Dr Tim Murrells, Dr John Norris

Project for the German Research Association of Automotive Technology (FAT)
TFEIP Transport Expert Panel Meeting – 13 May 2019
Overview of this presentation

- Overview of the client and project team
- Summary of the three project tasks:
 - Task 1
 - Critical review of the scientific literature on the contribution of brake wear, and other traffic-related sources, to ambient concentrations of PM
 - Task 2
 - Brake wear contributions according to national emissions inventories
 - Task 3
 - Scoping study into how uncertainties in brake wear emission estimates, and their contribution to PM air pollution, can be reduced
 - Brake wear emissions from modern vehicle technologies
- Current work
Overview of the client and the project team

- **Client:** The Research Association of Automotive Technology (FAT)
 - The FAT unites all German passenger and commercial vehicle manufacturers as well as numerous suppliers under the auspices of the Verband der Automobilindustrie (VDA), for the purpose of carrying out pre-competitive joint research
 - The VDA is an interest group of the German automobile industry

- **Project team:** Ricardo Energy & Environment (Division of Ricardo)
 - Environmental consultancy and air quality specialist
 - Core project team:
 - Dr David Carslaw (affiliated with University of York) – expert on analysis of air quality data and source apportionment
 - Dr Tim Murrells – expert in emission inventories and transport emissions modelling
 - Dr John Norris – expert in vehicle emissions and powertrains
 - Dan Wakeling – specialist on emissions data analysis
Task 1 – Scientific literature review

- The contribution of brake wear to ambient PM concentrations
 - Very few articles explicitly provided a quantitative estimate of the contribution of brake wear to ambient PM concentrations.
 - Around **5-10% of PM$_{10}$ concentrations in busy urban roadside areas** (~0.8 μg m$^{-3}$ to 4 μg m$^{-3}$)
 - The contribution of brake wear to ambient PM concentrations is highly spatially and temporally variable.
 - Articles cite considerable uncertainties:
 - “there is a clear lack of data in the field of road transport wear (…) emissions to conclusively assess its importance for air quality and the impact on human health” (Denier van der Gon et al. (2013))
 - “quantitative knowledge of the contribution, especially of non-exhaust emissions to PM concentrations remain inadequate” (Pant & Harrison, 2013)
Task 2 – Analysis of National Emissions Inventory data
- UK and German PM$_{10}$ emissions from road transport sources

The scale on the y-axis applies to both countries.
Task 3 – Scoping study

• **How uncertainties in brake wear emission estimates can be reduced**

• Emissions inventories don’t account for the high spatial variability of emissions.

• In principle, it is possible to produce a better estimate of where brakes are used i.e. a ‘**brake use inventory**’.

• This would identify the conditions under which brakes are applied together with an estimate of the energy dissipation in doing so.

• The development of a brake use inventory could:
 – help identify locations where brake wear emissions would tend to be highest.
 – have direct relevance for understanding the optimum location for making ambient measurements aimed at quantifying brake wear emissions of PM.
Task 3 – Scoping study

Modelling approach

- Analysis of high resolution data from on-road measurements of real vehicles
- Location, speed, and altitude, amongst other metrics, of 19 passenger cars tested along urban, rural, and motorway roads in central England
- Data processed to provide an estimate of the second by second Vehicle Specific Power (VSP). VSP is a mathematical representation of the engine load required to overcome aerodynamic drag, acceleration, rolling resistance, plus the kinetic and potential energies of the vehicle, all divided by the mass of the vehicle
 - Considered as a proxy for brake use

<table>
<thead>
<tr>
<th>time</th>
<th>lat</th>
<th>lon</th>
<th>speed</th>
<th>mass</th>
<th>VSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>52.60000</td>
<td>1.70000</td>
<td>0</td>
<td>1500</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>52.60002</td>
<td>1.70001</td>
<td>5</td>
<td>1500</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>52.60004</td>
<td>1.70002</td>
<td>10</td>
<td>1500</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>52.60006</td>
<td>1.70003</td>
<td>5</td>
<td>1500</td>
<td>-30</td>
</tr>
<tr>
<td>4</td>
<td>52.60008</td>
<td>1.70004</td>
<td>0</td>
<td>1500</td>
<td>-10</td>
</tr>
</tbody>
</table>
Task 3 – Scoping study

- VSP (VSP < -5 kW/t) at a motorway exit road

Source:
Ricardo Energy & Environment – using UK Department for Transport research data
Task 3 – Scoping study

- Slip/exit road from motorway

Image source: Google Maps – May 23 2017
Task 3 – Scoping study

- VSP (VSP < -5 kW/t) in the town of Nuneaton

Source:
Ricardo Energy & Environment – using UK Department for Transport research data
Emissions for future vehicle and brake technologies

<table>
<thead>
<tr>
<th>Potential change</th>
<th>Passenger cars</th>
<th>Light commercial vehicles</th>
<th>Rigid lorries</th>
<th>Articulated lorries</th>
<th>Buses and coaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>System specification – light-weighting</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Carbon ceramic discs</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Regenerative braking</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Positive piston retraction</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Brake-by-wire</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Current work

- Current work – impacts on air quality through modelling

- Develop a brake use inventory that can better reflect the actual distribution of brake wear emissions
- Understand the impacts on air quality through modelling
- There are three main tasks:
 - [1] Develop a brake use inventory
 - [2] Brake wear emission estimates
Current work

Work package [1]: Develop spatial-temporal brake use inventory

- Use comprehensive vehicle activity data to determine when and to what extent brakes are used
- Base on estimated vehicle energy dissipation (from data on vehicle mass, speed, acceleration, road gradient)
- Data sets such as euroFOT record actual brake use
- Will yield a spatial-temporal inventory of where brakes are used and the strength of braking

Work package [2]: Brake wear emission estimates

- Review brake wear emission factors and apportion to new inventory
- Output will be a spatially and temporally resolved brake wear emissions inventory
Current work

Work package [3]: Air quality model predictions

- Main aim to determine the likely effect on particulate matter (PM_{10}) concentrations
- Use the Ricardo RapidAir model – advanced Gaussian model, developed for urban air quality modelling
 - Considers local meteorological data
- Will answer questions such as:
 - Effect of using new brake wear inventory
 - Location types with minimum and maximum impacts
 - Source apportionment – how much do brake wear emissions contribute to overall concentrations?
 - Implications for urban air quality
Concluding remarks

- Measurements to understand the contribution of brake wear are highly uncertain and variable
- Inventories show that non-exhaust emissions sources are now starting to become relatively more important than exhaust emissions sources; a new era
- We have developed an approach using real vehicle activity data to produce a high resolution brake use inventory
- We are developing a more refined high resolution brake use inventory, to combine with contemporary emissions estimates, to understand the impacts on air quality through modelling
Contact details

Dan Wakeling
Senior Consultant – Ricardo Energy & Environment
Environmental consultancy and air quality specialist

daniel.wakeling@ricardo.com