Air pollutant emissions of combustion engines in Off-road equipment and machinery (The forgotten sector)

Methodology, data and results

Expert meeting on the Improvement of Transport Emission Inventories
19th October 2007, JRC Ispra, Italy

Udo Lambrecht, Hinrich Helms, Wolfram Knörr
IFEU - Institut für Energie- und Umweltforschung GmbH Heidelberg
IFEU Company Profile

IFEU = Institute for Energy and Environmental Research Heidelberg, since 1978
- Independent science
- organised as a private non profit company
- with about 40 scientists

IFEU Topics
- Transport and Environment
 - Life Cycle Assessment
 - Agriculture
 - Air pollution control
- Waste management
- Radioecology
- Energy

IFEU Clients: National and international associations, organisations and companies (e.g. World Bank, International Aluminium Association, Shell, Chevron-Sasol, European Commission, NGOs etc.)

Software:
- TREMOD
- Umberto
Overview

- Background
- Methodology
- Emission Factors
- Data on stock and activity
- Results
- Summary
Background: Situation in the Year 2000

- High contribution of the non-road-mobile machinery to emissions (NO_x, Particulates, NMVOC) and health impacts (e.g. studies from USA, Europe, Switzerland, Austria).

- Starting position:
 - No detailed analysis for Germany;
 - No (harmonised) data about stock, activity, emission-factors
 - No scenario calculation; influence of measures?

- Commonly used data (CORINAIR, "Handbuch" Switzerland):
 - not state-of-the-art (Guidebook February ´96)
 - methodology and data not compatible with new EU emission limits
What we did

- Calculation of
 - fuel consumption and exhaust emissions of several pollutants
 - of combustion engines in off-road equipment and machinery
 - in Germany 1980 – 2020

- Harmonised and transparent input-data => improve quality of data
 - Stock / Population of Engines/Machinery
 - Activity
 - Emission-Factors

- Developing a Microsoft Access based tool “TREMOD MM” (Mobile Machinery).
 - Considering the structure of actual emission regulation
 - Input-data are transparent, very detailed results
 - Future emissions can be calculated by using different scenarios.

- Workshops with Experts from Industry, Science, Administration
Considered mobile sources and machinery

Internal Combustion Engines in:

<table>
<thead>
<tr>
<th>CORINAIR Nummer</th>
<th>CORINAIR Bezeichnung</th>
<th>IFEU Kategorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNAP 080100</td>
<td>Military</td>
<td>Militär</td>
</tr>
<tr>
<td>SNAP 0802xx</td>
<td>Railways</td>
<td>Eisenbahn: Private Hafen- und Werkbahnen</td>
</tr>
<tr>
<td>SNAP 0803xx</td>
<td>Inland Waterways</td>
<td>Binnenschifffahrt (ohne gewerblichen Güterverkehr)</td>
</tr>
<tr>
<td>SNAP 0806xx</td>
<td>Agriculture</td>
<td>Landwirtschaft</td>
</tr>
<tr>
<td>SNAP 0807xx</td>
<td>Forestry</td>
<td>Forstwirtschaft</td>
</tr>
<tr>
<td>SNAP 0808xx</td>
<td>Industry</td>
<td>Bauwirtschaft und Industrie</td>
</tr>
<tr>
<td>SNAP 0809xx</td>
<td>Household and Gardening</td>
<td>Haushalt und Garten, Grünpflege</td>
</tr>
</tbody>
</table>

Quelle: [EMEP/CORINAIR 1996] IFEU 2003
Considered Emissions - Calculation of total emissions

\[E = E_A + E_V + E_B \]

with:

- \(E \): Exhaust emissions
- \(E_A \): Direct exhaust pipe emissions
- \(E_V \): Evaporation emissions (only hydrocarbon)
- \(E_B \): Refueling emissions (only hydrocarbon)
Calculation of direct exhaust pipe emissions

Calculation via stock and activity:

\[EO(t) = EFO(t) \times LF(t) \times P(t) \times Act(t) \times Stock(t) \]

- **EO(t)**: Emissions [t/a] of a pollutant for the basic year t
- **EFO(t)**: Emission-Factor [g/kWh] for the pollutant and fuel type for the basic year t (including deterioration and transient adjustment)
- **LF(t)**: Typical load factor \(\leq 1 \) for a category or subcategory for the basic year t
- **P(t)**: Average rated power [kW] of the considered engines for the basic year t
- **Act(t)**: Activity [hours/engine/year] for the basic year t
- **Stock(t)**: Stock of equipment and machinery
Example for Agricultural Tractor, Diesel < 37 kW

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td></td>
</tr>
<tr>
<td>>11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity (hours/engine/year)</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>10-20</td>
</tr>
<tr>
<td>10-20</td>
<td>20-30</td>
</tr>
<tr>
<td>20-30</td>
<td>30-40</td>
</tr>
<tr>
<td>30-40</td>
<td>40-50</td>
</tr>
<tr>
<td>40-50</td>
<td>50-60</td>
</tr>
<tr>
<td>>50</td>
<td>60-70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emission-Factor (g/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 2</td>
</tr>
<tr>
<td>Stage 1</td>
</tr>
<tr>
<td>Before Stage 1</td>
</tr>
</tbody>
</table>
Differentiation of Stock and Emission-Factors (1980 – 2020)
Derivation of *Emission-Factors* - Background

- **Basic data:**
 - Research Institute tests (FAT, Adlershof)
 - Studies (Switzerland, US-EPA, CARB….)
 - Certification data (KBA, CARB)
 - Industry tests (Euromot, Stihl)
 - Computer-Models (Switzerland, COPERT, NONROAD….)
 - Current measurements (Boat engines RWTÜV, Trains)

- **Derivation steps:**
 - Selection of data
 - Classification of engines/measurements (engine type, measurement date…)
 - Incorporation in electronic data base
 - Analysis following different criteria (technology, year, power…)
 - Derivation of average Emission-Factors
Differentiation of *Emission Factors*

- Power Categories (Based on EU legislation)
- Several emission standards (before 1980..... Stage 3)
- Emission-Factors are based on values in steady-state cycles

- Transient-Adjustment-Factors (TAFs)
- Deterioration Factors (DF)
Emission-Factors: Summary

- Collection and analysis of several hundred data sets
- Derivation of emission factors for
 - Diesel, Gasoline 2-stroke, Gasoline 4-stroke, LPG
 - Classes (kW-classes, SN, SH)
 - Fuel Consumption, NO\textsubscript{x}, PM, CO, HC,
 - Before 1990 Stage III
- Review (Science, Industrie)
Equipment Population, Activity: Data sources

- **Equipment Population:**
 - Statistics (e.g. Agriculture, Construction)
 - Estimation based on “annual sales” and “equipment life time”
 - Other parameters (households, engines per household....)

- **Annual hours of use**
 - Database of sales; industry, estimations

- **Verification/Validation if possible**
 - Using different methods
 - Check with the fuel consumption of sector if possible.

- **In Germany:**
 - good Data for the Agriculture Sector, highly differentiated
 - Other sectors not as good data as Agriculture Sector.
Development of the tractor population in Agriculture

- Decrease of Tractor population with shift to higher power categories
Examples of construction machinery populations
Calculated Fuel Consumption – Agriculture Diesel Statistics

Abb. 1: Kraftstoffverbrauch in der Landwirtschaft und nach Gasölabrechnung (kt)
NO$_x$ and Particle Emissions in Agriculture
Off-Road: NO\textsubscript{x} and VOC Emissions in Germany 1980 - 2020
Particulates - Off-road and Road Transport – A comparison

Abb. 1: Gegenüberstellung Resultate TREMOD MM und Straßenverkehr - Partikel

IFEU 2003
Summary

- A database (emission factors, load factors, activity) for the off-road-sector has been developed.
- The Computer-Tool considers the structure of actual emission regulation and allows to calculate different scenarios.
- The level of calculated PM-Emissions from Mobile Machinery is comparable to Road Transport.
- Uncertainties in emission factors, load factor, stock, working hours....
- There is a need for harmonizing the data of Off Road Sector (NEC, PM10-Directive...) in Europe.
- Further efforts are necessary for defining default values for
 - Share of technologies
 - Age distribution
 - Load factors
 - Annual hours of use
Questions / To discuss

- How to improve the Off-Road-Inventories?
- What database (engine population, lifetime, load factors…) are available in different countries (or could be created)?
- Practical methodologies

=> “Rule of thumb method”s in questionable quality
- Which default values should be defined?
- Need of bulk emission factors (g/kg fuel)
- Harmonization of different approaches/emission factors

- Improvement of emission factors (transient cycles, deterioration factor, aftertreatment)
Thank you for your attention

For further information, please contact:

Udo Lambrecht udo.lambrecht@ifeu.de

IFEU – Institut für Energie- und Umweltforschung
Heidelberg/Germany