20th Joint EIONET & UNECE TFEIP Meeting – Thessaloniki
Combustion and industry expert panel

Several projects
PCB issues
TSP heated filter vs dilution tunnel

Kristina Juhrich
Section V 1.6 - Emissions Situation
Paper on improving Emissions of Condensable Particulate Matter in the Context of the LRTAP Convention

- **2019:** At the 2019 TFEIP meeting, the updated Guidebook chapters will be presented for endorsement. Information will be disseminated to Parties, explaining that the best practice is to report PM emissions from small-scale combustion with the condensable component of PM included, and that the information in the Guidebook has been updated to specifically support this.

- **Long-Term (2022 onwards):**
 - Following the Guidebook update, Stage 3 checks can be used to support the long-term aim of all Parties standardizing their reporting of PM emissions according to best practice, and in particular that they will include the condensable component for estimating PM emissions from small-scale combustion, road transport and non-road mobile machinery. This may be challenging for Parties that currently use country-specific PM EFs.
German proposal

The TFEIP will oversee an update to the EMEP/EEA Guidebook (GB) chapters on small-scale combustion so that it clearly illustrates the issue regarding the inclusion of the condensable component in emission estimates for this source and clarifies that current estimates might not be comparable.

For the emission factors presented in the GB, it will be clearly stated in each case if the condensable component is included and default values for both options will be presented where possible. Further, the GB will allow parties to use either option for emission calculation from small combustion, but will require the publication of conversion factors in case countries use default or country specific factors representing the filterable component only. These factors could either represent a multiplicator to filterable PM or the condensable fraction of NMVOC. The GB will also provide default conversion factor values. Using these country-specific (or default) factors, modelers will be able to derive the model input needed for their work.
Why can we not implement condensable emission factors?

• Heated filter is the standard measurement method in Germany used by chimney sweepers at test benches for measurement projects for many years, the limit value refers to heated filter measurement – many data are available which couldn’t be used any more

BACK TO TIER 1 (key source)

• According to the 1. Federal Emission Control Act many old stoves have to be decommissioned – they cannot be measured any more with dilution tunnel

DESTROYING TIME SERIES CONSISTENCY

• NEC reduction targets refer to the base year 2005 which couldn’t be recalculated by using an emission factor including condensable particles – methodical differences

OPPORTUNITY FOR MANIPULATION
How can we help to solve modelling problems?

Knowledge is still limited – every conversion is very uncertain

- Information from modelers to inventory compiler about the gap between emission inventories and TSP concentrations
- Measurements needed with heated filter and dilution tunnel under the same conditions
- Analyses of NMVOC in order to find out which components are condensable
- Stoves which are exported to countries with another measurement standard have to be measured by both methods
- Results of the EN-PME project
Large combustion plants (1)

INITIAL SITUATION:
• ≈ data on 600 plants LCP data base (POSO)
• PRTR data
• Emission reports (every 4 years)

PREVIOUS APPROACH:
• Research projects

IDEA:
• Getting an own understanding of all data including all background tables
• Providing a detailed documentation
Large combustion plants (2)

DIFFERENT PLANT TYPES:
- traditional power plants (steam turbine)
- Gas turbines
- Combined cycle
- District heating plants
- Compressor stations
- Process furnaces (chemical industry)

FUELS:
- Lignite (distinguished by different regions)
- Hard coal
- Blast furnace gas & coke oven gas
- Natural gas
- Fuel oil
- Residual gases from chemical industry
Large combustion plants (3)

POLLUTANTS

NO_x
SO_2
TSP
CO
Hg
NH_3
Large combustion plants (4)

<table>
<thead>
<tr>
<th>NFR-Code</th>
<th>Name of Category</th>
<th>Method</th>
<th>AD</th>
<th>EF</th>
<th>Key Category 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.3</td>
<td>Public Electricity and Heat Production</td>
<td>T2</td>
<td>NS</td>
<td>CS</td>
<td>L & T: NOx, SOx, TSP, PM10, PM2.5, Hg, Cd, PCDD/F</td>
</tr>
</tbody>
</table>

WILL BE PUBLISHED HERE

Bibliography
5. Richter et al., 2011; W. Richter, U. Karl, R. Hartel, D. Buchau: Large and medium combustion plants, including gas turbines: FKZ 3708 42 301, "Fortschreibung der Emissionsfaktoren für Feuerungs- und Gasturbinenanlagen nach 13./17. BImSchV und TA Luft"; DfU, KIT, and EIEF; 2011; not published
6. ATZ, 2010: Waste incineration: FKZ 3708 49 1075 "Überprüfung der Emissionsfaktoren für die Abfallverbrennung"; ATZ Entwicklungszentrum, Robert Daschner, Prof. Dr. Martin Fautel, Prof. Dr. Peter Quicker, Samir Binder: not published

Published by Umweltbundesamt (German Environment Agency), FG V 1.4 "Emission situation", Wörthstr. Platz 1, 06444 Dessau, Germany — [Imprint](https://www.umweltbundesamt.de/en/publication/beitrag-zur-veraenderung-von-motorraessourcen)
Refinery project (1)

- Very comprehensive reports (more than 200 pages for one refinery)
Refinery project (2)

Ebene 0
- total emission

Ebene 1
- processing
- combustion plants

Ebene 2
- processes
- fugitive emissions
- combustion plants
- waste incineration

Ebene 3
- catalyst regeneration
- claus plant
- other
- sealing gaskets
- storage
- loading
- cleaning processes
- waste water treatment
- flares

Ebene 4
- catalyst regeneration (FCC)
- catalyst regeneration (reformer)
- periodic catalyst regeneration
- calcination
- continuous
- periodic

Ebene 5
- no steamcracker
- steamcracker

Ebene 6
- no methanol production
- synthesis gas production
- methanol production

Müller-BBM Cert 2019
SO$_2$ emission factors of refinery gas

<table>
<thead>
<tr>
<th>Brennstoff</th>
<th>Parameter</th>
<th>n</th>
<th>$Q_{50%}$</th>
<th>\bar{x}</th>
<th>95 % Konfidenzint.</th>
<th>gew. \varnothing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>min.</td>
<td>max.</td>
</tr>
<tr>
<td>Einheit</td>
<td>[-]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jahr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raffineriegas</td>
<td>2004</td>
<td>97</td>
<td>6,72</td>
<td>23,32</td>
<td>3,51</td>
<td>43,13</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>87</td>
<td>7,17</td>
<td>13,48</td>
<td>8,97</td>
<td>17,98</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>70</td>
<td>4,73</td>
<td>14,48</td>
<td>3,79</td>
<td>25,17</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>66</td>
<td>2,54</td>
<td>10,44</td>
<td>4,79</td>
<td>16,09</td>
</tr>
</tbody>
</table>

Müller-BBM Cert 2019

Default SO$_2$ emission factor = 0.281 g/GJ (kg/TJ)
LCP Measurement Project (running)

- Heavy metals: Pb, Cd, As, Cr, Cu, Ni, Se, V, Zn
- POPs: PCDD/F, PCB, HCB, PAH (NFR 4)
- PM10 & PM2.5
- VOC and CH₄

- Information on NOₓ, SO₂, TSP, CO and the specific flue gas volume from the operators
Small combustion projects (1)

BASIC MEASUREMENTS OF DIFFERENT STOVES
IN ORDER TO REVIEW THE IMPLEMENTATION OF NEW LIMIT VALUES FOR SMALL WOOD COMBUSTION PLANTS

• TSP (heated filter)
• CO
• OGC (VOC)
• NOx
• Hopefully also N₂O, NH₃ and CH₄
PAH MEASUREMENTS OF SMALL COMBUSTION PLANTS USING WOOD AND BRIQUETTES

- All 16 US EPA
- Ignition process and main combustion
PCB Problems

DIFFERENT MEASUREMENT METHODS
AS A RESULT EMISSION FACTORS AND EMISSIONS IN A DIFFERENT ORDER OF MAGNITUDE

• Waste incineration: 0.XY g

• Industrial processes: XY.XY kg

• PCB from product use: XY.XY tons

• Two PCB columns in the NFR tables?
Thank you very much for your attention

Kristina.juhrich@uba.de