TFEIP - Transport

Jukka-Pekka Jalkanen
Shipping

- Waterborne traffic
 - National, international
 - Ocean/Inland
 - Recreational boating

- Vessel activity
 - AIS, LRIT, VMS, radar, departure/arrival times, ICOADS, AMVER…
 - Anything with timestamp, location & identity; know the strengths and weaknesses of each

- Tasks from European Sustainable Shipping Forum
 - Emission factors
 - Ship emission modeling
 - Primary/Secondary PM, especially BC
 - Impact of emission abatement

Requirements go beyond Tier 3 inventory preparation approach; Activity data affects EFs
What is ESSF

• Several subgroups
 - Air emissions from ships (Compliance monitoring, fuel switching, emission modeling)

• Round table, consists of
 - Commission: DG ENV, MOVE, CLIMA, EMSA
 - All EU member states
 - Research partners
 - Engine/Equipment manufacturers
 - NGOs
 - Shipping companies, stakeholder organisations
 - ECSA, ESPO, also national level

• Purpose: Provide a forum for exchange of information and discussion
 - May feed to IMO submissions
Emission factors

• Lot of the work still relies on emission factors from 1995 Lloyds Register campaign

• Fuel consumption modeling
 ➢ Equivalence between g/kWh and g/kg

• Load dependency of emission factors
 ➢ Not just weighted average of ISO 8178, but the values themselves
 ➢ Emphasize onboard measurement campaigns
 ➢ Continuous measurements

• HFO, MDO, MGO, LNG, biofuels
 ➢ Methane slip
 – Diesel
 – Otto

<table>
<thead>
<tr>
<th>NOx</th>
<th>SOx</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>BC</td>
<td>PM</td>
</tr>
<tr>
<td>VOC</td>
<td>CH4</td>
<td>PN</td>
</tr>
</tbody>
</table>
Emission abatement

• Repeat the same table, but include the impact of each emission abatement technique on various pollutants

• Most relevant ones: SCR, SOx scrubbers
 ➢ (DWI, HAM, DOC, WiFE, NTP…)

<table>
<thead>
<tr>
<th>NOx</th>
<th>SOx</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>BC</td>
<td>PM</td>
</tr>
<tr>
<td>VOC</td>
<td>CH4</td>
<td>PN</td>
</tr>
</tbody>
</table>

• SCR temperature window; OK for 350°C, but significantly less for 270°C
 ➢ Low load operation may be a problem for SCR → Port areas

• Scrubber: Increase of fuel consumption (few %), SOx removal, impact on PM, especially on BC

• LNG
Products of incomplete combustion

- EC/OC; BC
- Black Carbon emissions from marine engines using various fuels
 - Connected to both engine operation and fuel, not necessarily to sulphur content of fuel
 - New common rail engines, electronically controlled ≠ older mechanically controlled engines
 - Scrubbing reduces BC, but only slightly
- VOC emissions much lower (1/6) with modern engines than the 1995 campaign suggests
 - VOC speciation important: volatile, non-volatile, semivolatile
 - Not available if ISO 8178 is required (THC from FID) → GC-MS?
 - Secondary PM formation needs this information, big problem for CTMs
 - Plan A: PM as non-volatile, speciation of VOCs → CTMs take care of relevant processes
 - Plan B: PM includes the condensed fraction → Emission models take care of the condensing fraction
- CO, a function of engine load, but also a function of load change
 - For old engines, transitional loads will produce peaks of CO