Emissions in the EMEP MSC-W model

Ágnes Nyíri
MSC-W

TFEIP Workshop 13th May 2013
EMEP MSC-W model

- Multi-layer Eulerian dispersion model to simulate long-range transport of air pollution
- Performs model calculations in support of the CLRTAP (Convention on Long Range Trans-boundary Air Pollution) for more than 30 years
- Used in a wide range of scientific and air pollution policy context
- Typically applied to tackle problems within the fields of acid deposition, tropospheric ozone and particles
Standard EMEP emission input

- **Gridded annual emissions**
 - Provided by CEIP based on emission data reported under the LRTAP Convention and NEC Directive
 - NOx, SOx, NH3, NMVOC, CO, PMco, PM2.5
 - 50 x 50 km² polar stereographic (PS) projection, http://www.emep.int/grid/EMEP_domain.pdf
 - 10 anthropogenic SNAP source-sectors
 - New resolution, projection and sector system from 2013 (0.1° x 0.1° lon-lat, GNFR sectors)
SNAP source-sectors

<table>
<thead>
<tr>
<th>SNAP 1</th>
<th>Combustion in energy and transformation industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNAP 2</td>
<td>Non-industrial combustion plants</td>
</tr>
<tr>
<td>SNAP 3</td>
<td>Combustion in manufacturing industry</td>
</tr>
<tr>
<td>SNAP 4</td>
<td>Production processes</td>
</tr>
<tr>
<td>SNAP 5</td>
<td>Extraction and distribution of fossil fuels and geothermal energy</td>
</tr>
<tr>
<td>SNAP 6</td>
<td>Solvent use and other product use</td>
</tr>
<tr>
<td>SNAP 7</td>
<td>Road transport</td>
</tr>
<tr>
<td>SNAP 8</td>
<td>Other mobile sources and machinery</td>
</tr>
<tr>
<td>SNAP 9</td>
<td>Waste treatment and disposal</td>
</tr>
<tr>
<td>SNAP 10</td>
<td>Agriculture</td>
</tr>
<tr>
<td>SNAP 11</td>
<td>Other sources and sinks</td>
</tr>
</tbody>
</table>
Current EMEP domain

Grid indexes used in emission files, counting starts at the lower-left corner of the grid domain.
Example of emission data

- Official NOx emissions for 2010 over the extended EMEP domain in 50 x 50 km² PS projection
Standard EMEP emission input

- Requirements/wishes for improvements
 - As complete and reliable emission data reporting as possible
 - Better documentation/explanation of significant changes in emission totals and spatial distribution (e.g. NH3 in UA is 187Gg in 2009, 25Gg in 2010)
 - Emission trends from international shipping should reflect introduction of SECAs in certain years
 - Emissions from national shipping not always reported, can not be distinguished from other mobile sources
Emissions in the model

- Vertical distribution
 - Default distribution based upon SNAP sectors

<table>
<thead>
<tr>
<th>No.</th>
<th>Sources</th>
<th>Height of Emission Layer (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-92</td>
</tr>
<tr>
<td>1</td>
<td>Combustion in energy and transformation industries</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Non-industrial combustion plants</td>
<td>100(a)</td>
</tr>
<tr>
<td>3</td>
<td>Combustion in manufacturing industry</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Production processes</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>Extraction and distribution of fossil fuels and geothermal energy</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>Solvents and other product use</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>Road transport</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>Other mobile sources and machinery</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>Waste treatment and disposal</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Agriculture</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: (a) Up to version rv4β SNAP-2 was split 90% into the lowest layer, then 10% in the next lowest.
Emissions in the model

- **Vertical distribution**
 - Distribution is originally based upon plume-rise calculations *(Vidic, 2002)*
 - Simplified and adjusted to reflect recent findings *(Bieser et al., 2011; Pregger and Friedrich, 2009)*
 - SNAP2 now reflects the dominance of domestic combustion in this source sector having all emissions in the lowest model level
 - **Possibilities for improvements**
Emissions in the model

- **Temporal distribution**
 - Monthly and day-of-week time factors specific to pollutant, country and SNAP source-sector
 - Based on data from the GENEMIS project (Friedrich and Reis, 2004)
 - For SNAP2 day-of-year time distribution using degree-day factors (function of daily temperatures in grid cells) reflecting that domestic heating varies with temperature
 - Hourly time factors specific to day-of-week and SNAP source-sector (B. Bessagnet, INERIS)

- **Possibilities for improvements**
Emissions in the model

- Chemical speciation
 - Some emission files include a group of compounds (e.g. NOx, SOx, NMVOC, PMs)
 - Default splits are applied normally for each SNAP source-sector
 - More detailed specification (e.g. for particular countries or SNAP sectors) can also be treated in the model
 - Possibilities for improvements
Emissions in the model

- **VOC speciation**
 - Specified for each SNAP source-sector
 - “Lumped molecule” approach (e.g. o-xylene represents all aromatic species)
 - Derived from UK speciation (Passant, 2002)

<table>
<thead>
<tr>
<th>SNAP</th>
<th>C2H6</th>
<th>NC4H10</th>
<th>C2H4</th>
<th>C3H6</th>
<th>C5H8</th>
<th>OXYL</th>
<th>CH3OH</th>
<th>C2H5OH</th>
<th>HCHO</th>
<th>CH3CHO</th>
<th>MEK</th>
<th>GLYOX</th>
<th>MGLYOX</th>
<th>UNREAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.559</td>
<td>14.836</td>
<td>2.406</td>
<td>4.376</td>
<td>0.000</td>
<td>9.479</td>
<td>0.000</td>
<td>0.000</td>
<td>55.691</td>
<td>0.034</td>
<td>0.620</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>12.589</td>
<td>39.790</td>
<td>8.174</td>
<td>10.767</td>
<td>0.000</td>
<td>18.632</td>
<td>0.000</td>
<td>3.912</td>
<td>5.586</td>
<td>0.207</td>
<td>0.089</td>
<td>0.000</td>
<td>0.000</td>
<td>0.255</td>
</tr>
<tr>
<td>3</td>
<td>4.996</td>
<td>35.610</td>
<td>9.044</td>
<td>9.289</td>
<td>0.000</td>
<td>18.323</td>
<td>0.561</td>
<td>3.034</td>
<td>24.134</td>
<td>0.059</td>
<td>1.347</td>
<td>0.000</td>
<td>0.000</td>
<td>0.805</td>
</tr>
<tr>
<td>4</td>
<td>2.652</td>
<td>34.519</td>
<td>5.458</td>
<td>4.257</td>
<td>0.142</td>
<td>13.380</td>
<td>1.176</td>
<td>31.414</td>
<td>0.077</td>
<td>0.978</td>
<td>1.608</td>
<td>0.000</td>
<td>0.000</td>
<td>4.337</td>
</tr>
<tr>
<td>5</td>
<td>17.842</td>
<td>79.895</td>
<td>9.018</td>
<td>1.569</td>
<td>0.008</td>
<td>0.505</td>
<td>0.000</td>
<td>0.000</td>
<td>0.078</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.085</td>
</tr>
<tr>
<td>6</td>
<td>0.444</td>
<td>44.052</td>
<td>0.244</td>
<td>0.678</td>
<td>0.008</td>
<td>17.904</td>
<td>6.101</td>
<td>16.416</td>
<td>0.011</td>
<td>0.000</td>
<td>9.965</td>
<td>0.000</td>
<td>0.000</td>
<td>4.176</td>
</tr>
<tr>
<td>7</td>
<td>4.832</td>
<td>36.698</td>
<td>6.796</td>
<td>10.896</td>
<td>0.000</td>
<td>35.051</td>
<td>0.000</td>
<td>0.000</td>
<td>2.700</td>
<td>2.606</td>
<td>0.421</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>3.775</td>
<td>47.416</td>
<td>6.636</td>
<td>10.608</td>
<td>0.000</td>
<td>24.676</td>
<td>0.000</td>
<td>0.000</td>
<td>3.115</td>
<td>3.261</td>
<td>0.235</td>
<td>0.146</td>
<td>0.117</td>
<td>0.014</td>
</tr>
<tr>
<td>9</td>
<td>25.718</td>
<td>36.778</td>
<td>5.237</td>
<td>1.830</td>
<td>1.153</td>
<td>7.881</td>
<td>0.427</td>
<td>2.439</td>
<td>16.060</td>
<td>0.000</td>
<td>0.093</td>
<td>0.000</td>
<td>0.000</td>
<td>2.383</td>
</tr>
<tr>
<td>10</td>
<td>0.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>
Possibilities to improve the use of emissions in the model

- Information from countries on
 - Vertical distribution (emission heights)
 - Temporal distribution (time factors)
 - Chemical speciation of grouped compounds, e.g. VOC and PM
Other emission sources

- **Aircraft**
 - NOx emissions from aircraft from QUANTIFY
 - www.pa.op.dlr.de/quantify
 - Calculated on annual basis and distributed to monthly files according to seasonal variation
 - Spatial resolution 1° x 1°x 610m, interpolated to correct grid during model run

- **Road dust**
 - PM emissions from road traffic
 - Methodology and code from Denier van der Gon et al., 2010
Other biogenic emission sources

- **Natural SO2**
 - DMS (dimethyl sulfide) emissions from sea
 - Monthly fields (Tarrasón et al., 1995)

- **Forest fires**
 - Global daily emissions stored at 0.2°x0.2° resolution from “Fire Inventory from NCAR” (FINNv1) from year 2005
 - For earlier years 8-daily fire emissions from “Global Forest Emission Database” (GFED-2)
 - Pollutants included: SO2, CO, NOx, NMHC, PM2.5, PM10, OC and BC
Other biogenic emission sources

- **Biogenic NMVOC**
 - Foliar emissions of isoprene (and monoterpenes) are calculated in the model for each grid cell and model time-step (function of temperature, solar radiation, land-cover)
 - Default BVOC emission potentials for four forest types and other land-cover types are used
 - Good land-cover information is necessary
 - **Possibilities for improvements**
Other (biogenic) emission sources

- **Soil NO emissions**
 - Emissions of NO from soil of seminatural ecosystems are specified as function of N-deposition and temperature
 - Pre-calculated N-depositions are used
 - Large country-to-country differences, might be significant compared to anthropogenic sources in areas with low population density
 - Depends on ecosystems, thus detailed land-cover data is required
 - Details of soil and vegetation types, timing of growing seasons, fertilization, irrigation
Other (biogenic) emission sources

- Possible problems with soil NO (NH₃)
 - Soil NO emissions might already been included in SNAP 10 by some countries (double counting)
 - Emission factors are uncertain, risk of emission differences from country to country because of country-expert choices rather than due to real emissions changes
 - Very meteorology dependent, better to calculate in the model rather than derive from an annual average
 - Details of soil and vegetation types, timing of growing seasons, fertilization, irrigation
Other biogenic emission sources

- **Lightning**
 - NOx emissions from lightning are included as monthly averages at 5.65° x 5.65° resolution (Köhler et al., 1995)

- **Volcanoes**
 - SO2 emissions from passive degassing of volcanoes are reported for Etna and Stromboli
 - To model SO2 and PM emissions from real eruptions (e.g. Eyjafjallajökul in 2010 and Grímsvötn in 2011) annual total emissions are not sufficient
Other biogenic emission sources

- **Sea salt and natural mineral dust**
 - The model calculates sea salt aerosols with diameters up to 10 μm (Tsyro et al., 2011)
 - The model includes windblown dust within the model domain and dust produced outside, but transported to the model grid (e.g. Saharan dust through boundary conditions)
Possibilities for improvements of non-inventoried emissions

- How to treat non-inventoried emissions?
 - Meteorology dependent emissions might be best treated in the model
 - Detailed auxiliary data might be necessary
 - Other emission databases than those we use?
 - Other methodologies?
More information about emissions in the EMEP MSC-W model and references

- http://www.atmos-chem-phys.net/12/7825/2012/