The challenges of estimating Mercury emissions

Kristina Juhrich
Mercury

In German the meaning of the word mercury (Quecksilber) is “Living silver”.

Same meaning in Latin: argentum vivum

Mercury is a liquid metal, which changes more readily to the gaseous phase.
The challenges of estimating Mercury emissions

2012 Mercury emissions in t

- Energy Industries; 6.94
- Metal Production; 1.10
- Chemical Industry; 0.51
- Mineral Products; 0.66
- Small combustion; 0.44
- Transport; 0.42
- Manufacturing Industries and Construction; 0.28
- Cremation; 0.0004
The challenges of estimating Mercury emissions

Discovery of a remarkable underestimation in 2012

Underestimation in the range of 4.6 t in source category 1.A.1
The challenges of estimating Mercury emissions

What happened?

A comparison with PRTR data showed that inventory data were remarkably lower.

Analyses of PRTR data
- To find out if operators use high default values
- If measurement data show other results

Combination of PRTR emission data with LCP fuel data (~80 plants)
- To calculate a comparable emission factor
- Distinction between measured (M), calculated (C) and estimated (E) values
- Additional quality control: comparison of NO\textsubscript{X} and SO\textsubscript{2} emissions from PRTR with LCP data

Result:
Inventory emission factor was plausible but did not reflect the annual average of all German plants.
The challenges of estimating Mercury emissions

Hg emission factors

Emission factors are average values for different years.

For Lignite a distinction is made for 4 mining regions of different coal qualities.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>range of PRTR values</th>
<th>Inventory (old value)</th>
<th>Inventory (new values)</th>
<th>Guidebook 2013 Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignite</td>
<td>0.8 – 9.5 g/TJ</td>
<td>0.5 g/TJ</td>
<td>3.5 g/TJ</td>
<td>2.9 g/TJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.1 g/TJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.4 g/TJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.3 g/TJ</td>
<td></td>
</tr>
<tr>
<td>Hard coal</td>
<td>0.3 – 4.4 g/TJ</td>
<td>1.0 g/TJ</td>
<td>2.1 g/TJ</td>
<td>1.4 g/TJ</td>
</tr>
</tbody>
</table>
The challenges of estimating Mercury emissions

Example: trend of Mercury emissions of one power plant
The challenges of estimating Mercury emissions

Behaviour of Mercury in the flue gas

Hg content of the fuel
Complete release into the flue gas as Hg0

Hg0 partial adsorption to particles
Partial oxidation to Hg$^{2+}$: depending on the presence of halogens and sulphur dioxides

Hg removal
Hg0: activated carbon filter
Particle: electrostatic precipitator or other dust filters
Hg$^{2+}$: desulphurization plant

SCR plant: promotes the oxidation of Hg and therefore Hg removal

Mercury re-emission
Some wet gas desulfurization plants convert oxidized mercury back to it’s elemental form, known as mercury re-emission.
Trend discussion – development of time series

Two different German countries in 1990
With different environmental standards

Eastern Germany (former GDR)
Only a few measurement data are available. In some cases expert judgement is necessary. Information on some important fugitive emissions (natural gas production with a very high Hg content) or emissions from product use is missing.

Western Germany
Same values were used for the whole time series (no considerable changes in abatement technology)
But a decreasing use of German hard coal with a high Hg-content

1990 data is very uncertain, possibly underestimated
New: reporting of Mercury from Chlor-alkali electrolyses (Mercury cell technique)

Presentation about the Mercury convention at UBA
Katja Kraus (chair of the task force on heavy metals) gave a presentation about the Mercury convention.

- Information that Mercury cell technique is still used in Germany
- Time series and emission factors were available at UBA
- Collaboration with many other experts is necessary
Further Steps

Ongoing project on natural gas measurements (DBI Leipzig)
Measurements of different gas qualities (indigenous production and different import gases).
First results show, that the Mercury content of natural gas is extremely low.
Hg emission factor can be used for all sectors.

Ongoing project on coal analyzes
Analyzes of hard coal and lignite briquettes, which were used in small combustion plants.

Oil analyzes
Analyzes of light fuel oil and heavy fuel oil, which were used in small combustion plants.
The challenges of estimating Mercury emissions

Conclusion

Sometimes quality improvements can have a greater impact on the national totals than the closure of the last gap

Besides Mercury emissions are very uncertain...
Thank you very much for your attention!

Kristina.Juhrich@uba.de