Exhaust and non-exhaust PM emissions from road traffic

October 2004
Milan, Italy

Liesbeth Schrooten
Ina De Vlieger
Rudi Torfs

Work financed by the Flemisch Environmental Agency
Vito

Vlaamse Instelling voor Technologisch Onderzoek

Flemish Institute for Technological Research
Content

1. Exhaust emissions
2. Monte Carlo analysis
3. Updates
4. Non-exhaust emissions
5. Conclusions
1. Exhaust emissions

Methodology

Emission

=

Emission factor * Activity data
1. Exhaust emissions

Data

- **Diesel vehicles: TEMAT model**
 - Emission factors: speed dependant functions
 - vehicle type
 - technology
 - age
 - road type
 - traffic type
 - cylinder capacity or weight of the vehicle
 - Activity data: total amount of covered kilometres

- **Petrol and LPG vehicles**
 - Emission factors: Literature
 - Activity data: TEMAT model
1. Exhaust emissions

Results

PM$_{2.5}$

<table>
<thead>
<tr>
<th>Category</th>
<th>1995</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorcycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passenger cars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light duty freight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy duty freight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coaches</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ton
2. Monte Carlo sensitivity-analysis

Monte Carlo

- Different statistical techniques

- Estimated value \rightarrow probability distribution

- Probability functions:
 - Input parameters of emission factors
 - Activity data
2. Monte Carlo sensitivity-analysis

Probability distributions

- **Emission factors (Diesel)**
 - Average speed
 - Fraction peak traffic
 - Fraction on urban roads

- **Emission factors (Petrol and LPG)**
 - Emission factor
 - Fraction un urban roads

- **Activity data**
 - Average travelled kilometres for the year 1995
 - The increase (percentage) of travelled kilometers per year
2. Monte Carlo sensitivity-analysis

Results

<table>
<thead>
<tr>
<th>PM$_{2.5}$ (ton)</th>
<th>1995</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value 95% CI</td>
<td>Value 95% CI</td>
</tr>
<tr>
<td>Total</td>
<td>5762 (7142 - 8022)</td>
<td>6284 (6008 - 6581)</td>
</tr>
<tr>
<td>Motorcycles</td>
<td>111 (90 - 133)</td>
<td>172 (140 - 204)</td>
</tr>
<tr>
<td>Passenger cars</td>
<td>4354 (3939 - 4820)</td>
<td>3304 (3037 - 3594)</td>
</tr>
<tr>
<td>Light duty</td>
<td>1187 (1118 - 1260)</td>
<td>1157 (1088 - 1231)</td>
</tr>
<tr>
<td>Heavy duty</td>
<td>1712 (1621 - 1812)</td>
<td>1479 (1414 - 1549)</td>
</tr>
<tr>
<td>Busses</td>
<td>155 (112 - 199)</td>
<td>136 (104 - 168)</td>
</tr>
<tr>
<td>Coaches</td>
<td>43 (38 - 47)</td>
<td>36 (33 - 39)</td>
</tr>
</tbody>
</table>

Emissions for passenger cars are the most difficult to define

- large 95% CI
- Due to the older diesel passenger cars
- 95% CI decreases between 1995 and 2000
 →Replacement of old vehicles into the new generations of vehicle technologies
2. Monte Carlo sensitivity-analysis

Decrease between 1995 and 2000

<table>
<thead>
<tr>
<th>Statistics</th>
<th>1995-2000 (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>1.276,47</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>130,50</td>
</tr>
<tr>
<td>0,0 % percentile</td>
<td>880,78</td>
</tr>
<tr>
<td>2,5 % percentile</td>
<td>1.030,91</td>
</tr>
<tr>
<td>5,0 % percentile</td>
<td>1.062,61</td>
</tr>
<tr>
<td>50,0 % percentile</td>
<td>1.277,54</td>
</tr>
<tr>
<td>95,0 % percentile</td>
<td>1.492,59</td>
</tr>
<tr>
<td>97,5 % percentile</td>
<td>1.535,11</td>
</tr>
<tr>
<td>100,0 % percentile</td>
<td>1.746,17</td>
</tr>
</tbody>
</table>

Significant decrease in PM exhaust emissions from road traffic between 1995 and 2000

- Average decrease = 1 273 ton
- 95% CI shows there is significant decrease (1 062 ton – 1 493 ton)
3. Updates

New insights

- **Amount of lorries per weight class**
 - Underestimation of the weight class 32 to 40 tonne in the past

- **Yearly driven kilometres**
 - Overestimated for the light duty vehicles for freight in the past
 - Total amount of vehicle kilometres driven overestimated with 15% in the past

- **Emission factors have been reviewed**
 - PM: did not change a lot
 - NO\textsubscript{X}: higher than expected

- **TEMAT: only diesel PM**
 - PM emissions from diesel-fuelled vehicles decrease in time
 - PM emissions from vehicles driven on petrol, LPG, ... become more important in the future
3. Updates

Results

<table>
<thead>
<tr>
<th></th>
<th>TEMAT v1</th>
<th>TEMAT v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger cars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light duty freight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy duty freight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Non-exhaust emissions

Methodology

\[\text{Emission} = \text{Emission factor} \times \text{Activity data} \]

- **Only limited information is available**
 - General emission factors were used

- **Dependent on the circumstances**
 - Normal or peak traffic
 - Speed
 - Weather
 - ...
4. Non-exhaust emissions

Results

<table>
<thead>
<tr>
<th>Year</th>
<th>Brake wear</th>
<th>Tyre wear</th>
<th>Road abrasion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- > PM10
- Coarse
- PM2.5
4. Non-exhaust emissions

Research

More research is necessary

→ Extensive measuring programs
→ Inventory of statistical data
→ Possible reduction measures
 • Materials for road surface
 • Materials for tires
 • Materials for breaks
→ Health implications
5. Conclusions

- **Large reductions** have been achieved between 1995 and 2000 for exhaust PM emissions from road traffic.

- **Further reduction** is still necessary.

- The **uncertainty** on the total of the calculated emissions will **decrease** in time due to the introduction of cleaner passenger cars.

- **Refinement of statistical data** is very important for the results of the calculated PM exhaust emissions.

- More attentions has to be made on PM emission factors for **vehicles driven on petrol, LPG, ...**

- Contribution of **non-exhaust emissions** will become **more important** in the future.

- **More research** needs to be done for the **non-exhaust emissions**.
Questions?