Discussion paper - BC methodologies for Fugitive emissions (1B) – Version 2

In the fugitive sector (1B), coke production, refining of oil products and flaring are reviewed in relation to BC emission. For the remaining fugitive sources BC emissions are assumed not occurring or negligible.

Coke production

Coke production leads to emissions of black carbon as the production process involves high-temperature processing of coal in a reducing environment and BC emissions likely occur from both coke oven leaks and pushing activities (Weitkamp et al., 2005).

Weitkamp et al. (2005) has measured concentrations of OC and EC among other pollutants using a fence line approach round a large coke plant. The measurements provided the following PM_{2.5} emission profile:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Share of PM_{2.5} mass, %</th>
<th>Share of PM_{2.5} / Share of PM_{10} %</th>
<th>Share of PM_{10} / Share of PM_{total} %</th>
<th>Share of PM, %</th>
<th>CleanAIR Task Force presentation by Joe Chaisson, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>49 / 15 **</td>
<td>90 / 74</td>
<td>48 ****</td>
<td>0.04 g/kg of coke produced (recovery oven facility</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>25 ± 5 *</td>
<td>35 / 11 ***</td>
<td>3.3 / 1.9</td>
<td>48 ****</td>
<td></td>
</tr>
<tr>
<td>OC</td>
<td>40 ± 9 *</td>
<td>35 / 11 ***</td>
<td>3.3 / 1.9</td>
<td>48 ****</td>
<td></td>
</tr>
</tbody>
</table>

§ Profile 26206 for a coke cooler (might underestimate OC according to Kupiainen & Klimont (2004))

** PM/EC PM_{10} 3.4

(0.75 kg BC/ton coke) / (1.535 kg BC/ton coke). It is not clear how the 0.75 has been estimated (1.535*0.95*0.5 = 0.73)

*** (0.54 kg BC/ton coke) / (1.535 kg BC/ton coke). It is not clear how the factor of 1.4 to calculate OC from EC has been estimated

**** 95 % of PM is carbonaceous, of which 50 % is BC and 50 % is OC

Weitkamp et al. (2005) is based on measurements carried out in 2002, and is supposed to be the best source of BC EFs for coke production under European conditions. The measurement of BC corresponds well with the shares given by Kupiainen & Klimont (2004) and Bond et al. (2004). The BC-share for PM_{10} given in Kupiainen & Klimont (2004) is applied for PM_{2.5} in lack of better data. The major part of BC is expected in the fine and ultrafine fraction, which might lead to an overestimation of BC in PM_{2.5}, but the possible error is within the uncertainty of the EF and is supported by the similar EF in Bond et al. (2004).

The following BC EFs are proposed for use in the GB:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Share of TSP, %</th>
<th>Share of PM_{10}, %</th>
<th>Share of PM_{2.5}, %</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>15</td>
<td>25</td>
<td>49</td>
<td>Kupiainen & Klimont (2004), Weitkamp et al. (2005)</td>
</tr>
</tbody>
</table>
Refining

Olmez et al. (1988) reported shares of EC and OC measured with thermal methods for an oil refinery catalytic cracker, after ESP. The mass fraction in fine (PM$_{2.5}$) particles was 97 per cent with the rest in coarse mode (coarse mode refer to PMs with 2.5μm<diameter<7-20μm).

EC$_{PM_{2.5}}$ = EC$_{PM_{10}}$ = 0.16 %

Cooper et al. (1987) include three species profiles for catalytic cracking of which one has data on EC and OC;

EC = 0.16 (±0.05) % of PM$_{2.5}$
OC = 0.28 (±0.99) % of PM$_{2.5}$

Chow et al. (2004) include species profiles for a number of sources, here among a catalytic cracker;

EC = 0.0703 (±0.05) % of PM$_{2.5}$
OC = 0.4732 (±0.99) % of PM$_{2.5}$

No BC emission factors have been found for fluid coking units.

The following BC emission factors are proposed for implementation in the guidebook:

<table>
<thead>
<tr>
<th>Tier</th>
<th>Source</th>
<th>GB Table</th>
<th>BC</th>
<th>OC</th>
<th>Unit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Catalytic cracking unit</td>
<td>3-2</td>
<td>0.1301</td>
<td>0.3766</td>
<td>% of PM$_{2.5}$</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>regenerators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Catalytic reforming units</td>
<td>3-3</td>
<td>0</td>
<td></td>
<td>% of PM$_{2.5}$</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Fluid coking units</td>
<td>3-4</td>
<td></td>
<td></td>
<td>% of PM$_{2.5}$</td>
<td></td>
</tr>
</tbody>
</table>

M: mean value of EFs from Olmez et al. (1988), Cooper et al. (1987) and Chow et al. (2004) (OC is mean of value of Cooper et al. (1987) and Chow et al. (2004))

A: assumption as no PM EFs are included in the EF table for catalytic reforming units in the guidebook

Flaring

A literature review has been carried out in search for emission factors for flaring. The knowledge on emissions from flaring are rather limited, which has been stated recently e.g. by CLRTAP Ad-Hoc Expert Group on Black Carbon (2010): “In fact there are no established BC emission factors for flaring and only recently a research group in Canada undertook an effort to estimate and validate numbers in use.” and by Arctic Council Task Force on Short Lived Climate Forcers (2011): “There is still considerable uncertainty regarding the quantification of black carbon emissions, particularly from sources such as open burning and gas flaring.”

US EPA (1995) gives soot emission factors for flare operations. The EFs are based on tests using crude propylene containing 80 % propylene and 20 % propane. EFs between 0 and 274 lb/108 Btu are reported in table 13.5-1. These values are not consistent with the values given in the footnotes to the same table.

According to the original source (US EPA (1983)) the values in the footnote are correct. US EPA 1983 gives soot EFs between 0 and 274 μg/L.

McEwen & Johnson (2012) found current emission factors to be questionable or based on measurements not comparable to open-atmosphere flaring. They have carried out quantitative emission measurements in
laboratory-scale for a number of different conditions. A simple empiric relationship has been found for
burners with large diameters between the volumetric heating value (HV) and the emission factor for soot:

$$EF_{BC} = 0.0578 \times (HV) - 2.09$$

A HV value of 45 MJ/m3 has been suggested for estimation of a standard BC emission factor for flaring. This
HV corresponds well with the HV given by Norway at 48 MJ/Sm3 (Climate and Pollution Agency, 2012). The
proposed Danish heating value for flare gas is 47 MJ/Nm3 (unpublished data based on EU ETS reports).

The correspondence between HV and EFBC is made probable, as the HV to some extend correlates with the
carbon content of the flare gas.

Based on the formula and the HV given by McEwen & Johnson (2012) it is proposed to implement the
following BC EF in the revised EMEP/EEA Guidebook:

$$EF_{BC} = 0.51 \text{ kg soot} / 1000 \text{ m}^3 \text{ fuel} = 0.01 \text{ g/GJ}$$

$$EF_{BC} = 1.3 \% \text{ of PM}_{10}$$

The measurements by McEwen & Johnson (2012) indicate that 80 % of total C is BC and the remaining 20 %
is OC. This leads to an EFOC = 0.13 kg soot / 1000 m3 fuel

References

Air Pollutant Emissions 1980-2010 - Submission under the UNECE Convention on Long-range
Transboundary Air Pollution

Arctic Council Task Force on Short Lived Climate Forcers (2011); 2011, Progress Report and
Recommendations for Ministers

global inventory of black carbon and organic carbon emissions from combustion. Journal of geophysical
research, vol. 109, D14203.

and Green, M.C. (2004): Source profiles for industrial, mobile, and area sources in the Big Bend Regional
Aerosol Visibility and Observational study. Chemosphere 54, pp. 185-208

Climate and Pollution Agency, 2012: Informative Inventory Report (IIR) 2012 Norway

CLRTAP Ad-Hoc Expert Group on Black Carbon (2010), 2010/08/03 (Draft report)
(http://www.eionet.europa.eu/events/Expert%20meeting/)

Cooper, J.A., Redline, D.C., Sherman, J.R., Valdovinos, L.M., Pollard, W.L., Scavone, L.C. and Badgett-West,
C. (1987): PM_{10} source composition library for the south coast air basin. Volume II.

and the potential for their control. Interim report IR-04-079

